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£4) Introduction

Treatment of breast cancer at an early stage can significantly improve the survival rate of
patients. Mammography is currently the most sensitive method for detecting early breast cancer [1,
2], and it is also the most practical for screening. Although general rules for the differentiation
between malignant and benign lesions exist, in clinical practice, only 15-30% of cases referred for
surgical biopsy are actually malignant. A number of research groups are in the process of developing
computer-aided diagnosis (CAD) methods which can provide a second opinion to the radiologist for
the detection and classification of breast abnormalities.

Radiologists routinely use several mammograms of different views of a patient with those
obtained in previous years for identifying interval changes, detecting potential abnormalities, and in
evaluating breast lesions. It is widely accepted that interval changes in mammographic features are
very useful for both detection and classification of breast abnormalities. Some existing CAD
techniques use information from multiple views of the same breast. Others use previous
mammograms for detection. However none incorporates information about the temporal
mammographic changes in the breast tissue for classification.

The goal of this project is to evaluate the usefulness of using interval changes to distinguish
between normal structures, benign masses, and malignant masses in CAD. The purpose of this study
is summarized as follows: 1. Characterize temporal changes in terms of the mammographic features
of normal breast structures, as well as benign and malignant masses. 2. Use this information to
develop methods for CAD. We hypothesize that the use of temporal changes in mammographic
features between current and previous mammograms of the patient will improve the success of CAD
technique for classification of masses. It is therefore expected that the use of such temporal
information will improve the positive predictive value of mammography by reducing benign
biopsies, and hence reduce both cost and patient morbidity.

To accomplish this goal we will first develop and evaluate reliable techniques for the
temporal regional registration of mammograms of the same patient. The temporal mammogram
registration technique we have developed is a novel approach in which the computer emulates the
search method used by many radiologists for finding corresponding structures on mammograms. The
method aims at registering a small region containing a suspected mass on the most recent
mammogram of the patient with one on a mammogram obtained from a previous year. Our regional
registration technique involves three steps: (1) identification of a suspicious structure on the most
recent mammogram, (2) initial estimation of the location on a previous mammogram of the region
corresponding to the suspicious structure and the definition of a search region which encloses the
object of interest on the previous mammogram, and (3) accurate identification of the location of the
matched object within the search region. The characteristic features of the two matched lesions then
will be automatically extracted and interval changes estimated. This interval change information will
be incorporated in an integrated CAD system.




(5) Body
In the forth year (4/6/01-4/5/02) of this grant, we have performed the following studies:

(A) Database collection and extraction of regions of interest (Task 1)

We continued collecting the data set for this study from the files of patients who had
undergone biopsy at the University of Michigan. The mammograms are scanned and the images are
saved in our storage device using automated graphic user interface developed in our laboratory.
Additionally the film information is recorded in a Microsoft Access database. Temporal pairs of
images were obtained. The current mammogram of each temporal pair exhibited a biopsy-proven
mass. We scan both cranio-caudal and mediolateral-oblique views. The mammograms were digitized
with a LUMISCAN 85 laser scanner at a pixel resolution of 0.05 mm x 0.05 mm and with 12-bit
resolution.

While the regional registration technique can be used for determining a corresponding
structure or region for any structure (both normal tissues and masses) in the breast, in this study we
are analyzing its accuracy on biopsy-proven masses alone. The location of the mass on the current
mammogram is identified by an Mammography Quality Standards Act (MQSA)-approved
radiologist experienced in breast imaging using an interactive image analysis tool on a UNIX
workstation. To provide the ground truth for evaluation of the computerized method, the radiologist
manually identifies the corresponding region on the previous mammogram. Bounding boxes
enclosing the mass on the current mammogram and the corresponding object on the previous
mammogram are provided by the radiologist for each case. Each mass as well as the corresponding
structure on the previous mammogram are rated for its visibility on a scale of 1 to 10, where the
rating of 1 corresponded to the most visible category. The size of the mass on the current
mammogram as well as the size of the corresponding structure on the previous mammogram are also
measured by the radiologist. The parenchymal density is rated based on the Breast Imaging
Reporting and Data System (BI-RADS) lexicon.

(B) Further developments of methods for establishing corresponding locations in current
and previous mammograms (Task 3)

We continued to improve our regional registration technique [3-6]. In the first step, we are
still working on development of an automated method that will detect the nipple location in the
breast image. The method is based on both the change of tangential direction and the change in the
tissue density along the breast border.

In the third and final step we have designed a new method - an adaptive similarity measure
(ASM), to improve automated identification of corresponding lesions on prior mammograms.

We are developing a new class of similarity measures (SM). It combines adaptive filtering
to enhance the lesion and a SM as a figure-of-merit (FOM) measure. The filters are designed with a
training set to maximize and minimize the FOM for the similar and dissimilar image pairs,
respectively, by using a gradient optimization technique. The ASM is applied to the final stage of
our multistage regional registration technique for mass identification on the prior mammogram. A
search for the best match between the lesion template from the current mammogram and a
structure on the prior mammogram is carried out within a search region, guided by the ASM.

This new approach was evaluated by using 179 temporal pairs of mammograms containing
biopsy-proven masses.

We found that 86% of the estimated lesion locations resulted in an area overlap of at least
50% with the true lesion locations. The average distance between the estimated and the true lesion




centroids on the prior mammogram was 4.5+ 6.7 mm. In comparison, the correct localization and
the average distance using a conventional correlation SM were 84% and 4.9 + 7.0 mm, respectively.

The preliminary results of this study are promising. The ASM improved the identification
of the corresponding lesions on temporal pairs of mammograms. The average Euclidean distance
between the computer estimate of the corresponding structure and the radiologist-identified
location and their standard deviation were both reduced when compared to multistage registration
using a conventional correlation SM.

We will present the preliminary results on this improved method at the International
Workshop for Digital Mammography (IWDM), Bremen, Germany, June 22 - 25, 2002 [22].

In the previous years, when we increased the data set from 124 to 179 temporal pairs the
detection accuracy was slightly reduced. For 124 temporal pairs 87% of the estimated lesion
locations resulted in an area overlap of at least 50% with the true lesion locations [5], [6]. For 179
pairs it was reduced to 84 %. The average distance between the estimated and the true lesion
centroids on the prior mammogram for 124 temporal pairs was 4.2+ 5.7 mm. For 179 temporal
pairs the average distance was 4.9+7.0 mm. The main reason for the reduction of the detection
accuracy was due to the more difficult 55 new temporal pairs. They included subtle masses
surrounded by breast densities with brighter mammography appearance. Those structures were
making the detection more difficult. A way to overcome this problem was to continue to improve
the detection methods. We introduced density-weighted contrast enhancement (DWCE) technique
[7] to improve the localization of the corresponding mass on the prior mammogram. The average
distance between the estimated and the true centroid of the lesions on the prior mammogram was
4.8+ 6.9 mm, which was slightly improved, however 84% of the estimated lesion locations resulted
in an area overlap of at least 50% with the true lesion locations and it did not show improvement.
By using the ASM method (described above) both the correct localization and the average distance
were 86% and 4.5+ 6.7 mm respectively, which is improved result compared to conventional and
DWCE method.

We will continue our studies to improve the technique, expand it to different types of SM,
and evaluate its accuracy on a larger data set.

(C) Obtaining hand drawn mass boundaries from radiologists and evaluation of
segmentation accuracy (Task 9)

As we reported before we carried out an evaluation of the segmentation technique by
comparison of the computer segmentations (K-means clustering [8] and active contour [9-11]) with
hand segmentations using the expertise of the radiologist.

Obtaining hand drawn mass boundaries from radiologists

An MQSA-approved radiologist experienced in breast imaging outlined the mass boundaries of
the masses on 239 regions of interest (ROI)s using an interactive image analysis tool on a UNIX
workstation.

In the future year more MQSA-approved radiologists experienced in breast imaging will
hand segment mass boundaries of the masses on the ROIs.

Formulate quantitative measures for assessing segmentation accuracy




For the purpose of our accuracy analysis, the radiologist’s hand segmentations were used to

compare with the computer segmentations. Three quantitative measures were used for evaluation
of the accuracy of the computer segmentations: Hausdorff distance, average Hausdorff distance and
the area overlap measure.
Hausdorff distance between two curves is defined as the maximum of the closest point distances
(DCPs) between the two curves [12], [13]. The closest point distance (DCP) associates each point
on both curves to a point on the other curve, and the Hausdorff distance finds the largest distance
between the associated points. The average Hausdorff distance, on the other hand, finds the
average of the DCPs between the two curves.

Area overlap is defined as follows:
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where A; is area inside the hand segmented mass outline and A; is area inside the computer
segmented mass outline.

Evaluate quantitatively the accuracy of computer boundary segmentation using radiologists
hand segmentation

Here we summarize again the segmentation results. For this study we used 239 ROL All
results presented in the following are average results for this 239 ROIs.

The results of the first stage of segmentation by the K-means clustering algorithm are the
following: average area overlap of 40%, average Hausdorff distance of 5.58 mm, and average
Hausdorff distance of 2.19 mm averaged over 239 ROls.

The results of the active contour segmentation are the following: average Area overlap of
67%, average Hausdorff distance of 4.49 mm, and average Hausdorff distance of 1.27 mm averaged
over 239 ROIs.

The active contour segmentation improved the segmentation accuracy. The above results
confirm the visual satisfactory agreement between the active contour segmentation and
radiologist’s hand segmentation.

Evaluate qualitatively the computer segmentation by means of an observer study

Our experience showed that radiologists gave very subjective estimation with large
variation within the data set when they visually evaluated the computer segmentation We found
that radioligist’s hand segmentation and a quantitative comparison, described above, is a better way
to evaluate the accuracy of the computer segmentation. This quantitation study would replace the
visual qualitative evaluation proposed in our original research plan.

(D)  Further develop methods for extracting morphological and texture features from
masses segmented from ROIs extracted from current and prior mammograms (Task
10)

As we reported previously, we develop methods for extraction of texture, morphological
and spiculation features from the segmented masses based on active contour segmentation [9-11].
Since the feature extraction is very important for the classification and we used the methods
intensively during the past year, here we will summarize the methods.
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The texture features used in this study were calculated from run-length statistics (RLS)
matrices [14]. The RLS matrices were computed from the images obtained by the rubber band
straightening transform (RBST)[15]. The RBST maps a band of pixels surrounding the mass onto
the Cartesian plane (a rectangular region). In the transformed image, the mass border appears
approximately as a horizontal edge, and spiculations appear approximately as vertical lines.

RLS texture features were extracted from the vertical and horizontal gradient magnitude
images, which were obtained by filtering the RBST image with horizontally or vertically oriented
Sobel filters and computing the absolute gradient values of the filtered image. Five texture
measures, namely, short run emphasis (SRE), long run emphasis (LRE), gray level nonuniformity
(GLN), run length nonuniformity (RLN), and run percentage (RP) were extracted from the vertical
and horizontal gradient images in two directions, 6 = 0°, and  =90°. Therefore, a total of 20

RLS features were calculated for each ROL The definition of the RLS feature measures can be
found in the literature [14].

The morphological features were extracted from the automatically segmented mass shape.
Five of morphological features were based on the normalized radial length (NRL), defined as the
Euclidean distance from the object’s centroid to each of its edge pixels, i.e., the radial length, and
normalized relative to the maximum radial length for the object [16]. The following five NRL
features were extracted: mean (NRLAVG), standard deviation (NRLSD), entropy (NRLENT), area
ratio (NRLAREAR), zero crossing count (NRLZCC). In addition, the perimeter (PERIM), area
(AREA), circularity (CIRC), rectangularity (SQR), contrast (CONT), perimeter-to-area ratio (CRR)
and Fourier descriptor (FF) features were extracted. The detailed definition of the morphological
features can be found in [17], [18].

A spiculation measure was defined for each pixel on the mass border by using the statistics
of the image gradient direction relative to the normal direction to the mass border in a ring of
pixels surrounding the mass [17], [19]. The spiculation measure for each border pixel was
normalized to be between 0 and /2, with a value of /4 indicating a random orientation of image
gradients, and larger values indicating a higher likelihood of spiculation. Three features were
extracted from the spiculation measure. The first feature (AVG) was the average of the spiculation
measure for all pixels on the mass boundary. The second feature (PERC_ABV) was the
percentage of border pixels with a spiculation measure larger than 7/4, and the third feature
(AVE_ABYV) was the average of the spiculation measure for those pixels with a spiculation
measure larger than /4.

A total of 35 features (20 RLS, 12 morphological and 3 spiculation) were therefore
extracted from each ROL

More detailed description of the above can be found in [23].

(E)  Analyze techniques for characterizing differences in these features (Task 11)

Additionally, difference features were obtained by subtracting a prior feature from the
corresponding current feature. Therefore, 35 difference features were derived from the 20 RLS, 12
morphological and 3 spiculation features.

We designed a new classification scheme allowing direct merge of current and prior
information. The input feature space to the classifier includes the current, prior and difference
features. This allows the classifier to choose the individual current and prior features or the
difference features. Stepwise feature selection with simplex optimization is used to select the
optimal feature subset. A linear discriminant classifier (LDA) is used to merge the selected
features for classification of malignant and benign masses. A leave-one-case-out training and
testing resampling scheme is used for feature selection and classification.




We have published the results on this method in Medical Physics Journal [23] as well as we
presented the results at the RSNA meeting [20] and SPIE meeting [21].

(F) Evaluate the effectiveness of LDA classifiers and neural networks for classification
(Task 12)

At this stage of our study we used 57 biopsy proven masses (33 malignant and 24 benign) in
the 56 cases. The 241 mammograms contained different mammographic views (CC, MLO, and
lateral views) and multiple examinations of the masses including the examination when the biopsy
decision was made. By matching masses of the same view from two different examinations, a total
of 140 temporal pairs were formed, of which 85 were malignant and 55 benign. A malignant
temporal pair consisted of a biopsy proven malignant mass or a mass that was initially not
recommended for biopsy and later found to be malignant by biopsy in a future year. A similar
definition was used for the benign temporal pairs. Within a pair, the current mammogram was
defined as the mammogram with the later date, and the prior mammogram was defined as the one
with the earlier date. Therefore, in cases with three consecutive exams, more than one temporal
pair could be formed and two of the mammograms could be called “current”. Among the 140
temporal pairs, we had 120 unique current mammograms. Of the masses in the 120 current
mammograms, 70 were malignant and 50 benign.

The current, prior, and difference features formed a multidimensional feature space for the
classification task. Stepwise feature selection applied to linear discriminant analysis (LDA) was
used to select the most useful features. The selected features were then used as the input predictor
variables for the LDA classifier. The classifier was trained and tested by a leave-one-case-out
resampling scheme. A case was considered to contain all ROIs from a given patient. In each
resampling step, the temporal pairs from 55 cases were used for feature selection and formulation
of the linear discriminant function, while the temporal pairs from the left-out case were used for
testing the trained classifier. A total of 56 training and testing steps were obtained from the 56
cases. The classification results from the 56 test cases were accumulated to evaluate the classifier
performance. Since the data set in this study was still small, we chose the feature selection
parameters such that the dimensionality of the input feature vector for the LDA classifier was small
in order to reduce the possibility of over-training.

To evaluate the improvement in the classifier performance designed by using the temporal
change information, two additional classifiers with different input features were obtained. One of
them was trained using the information extracted from the current single images of the temporal
pairs.  The other classifier was trained using the information extracted from the prior single
images of the temporal pairs. Comparison of the three classifiers will reveal the effectiveness of
interval change analysis for the classification of malignant and benign masses.

In this specific study we decided to use LDA classifier in order to have linear combination
among the features. The neural network classifier (NNC) combines the input features in nonlinear
way, which will make the analysis and comparisons more complicated. The use of NNC will
involve uncertainties for the structure of the neural network (number of hidden layers, number of
neurons in the hidden layers), number of iteration for training the NNC and how to have NNC not
overtrained. One of initial aims of the recent study was to find the useful subset of features. For
this purpose we extensively used the feature selection, which in case of NNC is very
computationally intensive.

At this stage of our research we wanted to have simple classification method which allowed
us to find useful features, and to design and compare different classifiers with different input




feature spaces (classifiers based on current and prior images) efficiently. This is the reason to
concentrate mainly on the use of the LDA classification schemes.

(G) Evaluate the effectiveness of developed classifiers using receiver operating
characteristic methodology (Task 13)

To evaluate the classifier performance, the training and test discriminant scores were
analyzed using receiver operating characteristic (ROC) methodology [26]. The discriminant scores
of the malignant and benign masses were used as decision variables in the LABROCI program
[27], which fits a binormal ROC curve based on maximum likelihood estimation. The
classification accuracy was evaluated as the area under the ROC curve, A,. The performances of
the classifiers were also assessed by estimating the partial area index (A%, The partial area
index (A,*?) is defined as the area that lies under the ROC curve but above a sensitivity threshold
of 0.9 (TPF, = 0.9) normalized to the total area above TPF,, (1-TPF). The partial A, indicates
the performance of the classifier in the high sensitivity (low false negative) region which is most
important for a cancer detection task.

The performances of the classifiers based on the temporal pairs, the current images, and the
prior images are summarized in Table 1. The classifiers that achieved the highest test A, values
with a small average number of features were presented here. Table 2 is a summary of the features
selected for each classifier.

For the 56 training subsets of temporal pairs used in this study, an average of 10 features
were selected for the classification task. The most frequently selected features included 4
difference RLS features (3 SRE and 1 LRE), 4 RLS features (2 SRE, 1 RLN and 1 RP), 1
spiculation feature from the current image, and 1 spiculation feature from the prior image (Table
2). The LDA classifier achieved an average training A, of 0.92 and a test A, of 0.88. The test
partial A, %% was 0.37.

Table 1. Classification results for the classifier based on the temporal change information, the
classifier based on current single image information, and the classifier based on prior
single image information.

Classification Avg. No. of selected Training A, Test A, Test partial
features A

Temporal pairs 10 0.92 0.88 £0.03 0.37£0.10

Current images 11 0.90 0.82+£0.04 0.32+0.08

Prior images 4 0.78 0.76 £ 0.04 0.24 £0.08

(H) Identify the preferred features and classification methods (Task 14)

Texture and spiculation features were important for malignant and benign classification of
mammographic masses for all three types of classifiers: the classifier based on temporal pair
information, the classifier based on current image information, and the classifier based on prior
image information [23]. One or more of the spiculation features were always selected in all
training partitions for all three classifiers. The most frequently selected texture features were the
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short run emphasis (SRE) features. They comprised more than 50 % of the texture features
selected for the three classifiers (Table 2).

Temporal-information-based classifier showed improved performance compared to the
classifiers based on current or prior image information alone. The input feature space to the
temporal-information-based classifiers included the current, prior, and difference features. This
allows the classifier to choose the individual features or the difference features. Using the stepwise
feature selection procedure and the linear discriminant classifier, it was found that the texture and
the spiculation features contained useful temporal information to perform malignant and benign
mass classification. Texture features appeared to provide the best information by the difference
features obtained from subtracting the prior from the corresponding current features (SRE and LRE
difference features). On the other hand, the best use of the spiculation features appeared to be a
direct combination of current and prior features in the input feature vector by the LDA since the
individual features were chosen.

We found that better feature subsets could be selected by the stepwise feature selection in the
subspaces than in the entire feature space. For example, for the temporal-information-based
classifier, a better feature subset with a higher test A, at 0.88 was found when the input feature
space included only the texture and spiculation subspaces. The addition of the morphological
feature subspace to the input feature space reduced the highest test A, to 0.84. Similarly, in the
case of the classifier based on prior image information, a better feature subset was obtained when
the texture and spiculation feature subspaces were used in the input feature space for stepwise
feature selection. Again the addition of the morphological feature subspace to the input feature
space reduced the highest test A, to 0.72. The classifier based on current image information was
the only one, among the three, that obtained a better result, as shown in Table 1, when the
morphological feature subspace was included in the input feature space.

One reason for the poor performance of the morphological features may be due to the fact
that the masses were more subtle in the prior images. In fact, the experienced MQSA
mammographer was not confident in seeing 25 of the "masses" on the prior images and could not
provide a mass size estimation for them. Although the active contour model would stop the
iteration based on the preset criteria and found an “outline” of the masses on the prior
mammograms, generally these mass outlines were less reliable than those on the current masses in
providing morphological characteristics of the masses. Texture features did not depend as strongly
on the precise mass boundary as morphological features. Three out of the four features selected for
classification of the malignant and benign masses on the prior images were RLS texture features.
A spiculation feature was also found to be a good discriminator.

In this study, we employed a simple measure of temporal change by taking the difference
between the feature from the current mass and the corresponding feature from the prior mass. We
observed improvement in classification with this simple temporal information. It will be important
to evaluate other similarity measures that can characterize small difference in image features of the
object of interest. It can be expected that a more sensitive similarity measure will provide a better
measurement of dissimilarity, or difference, between the current and prior masses and further
improve the utilization of the temporal change information on mammograms.

(I) Compare the accuracy of computerized classification with the malignancy assessment of
radiologists (Task 15).

We performed ROC analysis of the malignancy confidence ratings provided by the
experienced MQSA radiologist for the current image data set (120 images) [23]. The radiologist
estimated the likelihood of malignancy of the current masses on a 10-point confidence scale (1 —
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definitely benign and 10 — definitely malignant) based on the 120 current mammograms alone
without comparison with the prior.

The malignancy ratings resulted in an A, value of 0.80£0.04. This indicates that the masses
in the current mammograms cannot be easily distinguished as malignant or benign even by an
experienced radiologist, consistent with the fact that all lesions had indeed undergone biopsy. The
classifier based on the current image information has an A, value of 0.82+0.04, similar to the
accuracy of the radiologist for this data set.

Table 2. Selected features for classifiers based on temporal pairs, current images, and prior images.
The letter “H” or “V” at the beginning of the texture feature labels indicates that the
features were extracted from the horizontal or vertical gradient magnitude images,
respectively. The number (0 or 90) at the end of the texture feature labels shows the
direction at which the features were extracted.
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(J) Evaluate usefulness of temporal features for CAD by comparison of classification based
on temporal features with classification based on features extracted from the current
mammogram alone (Task 15)

For classification of malignant and benign masses using the current single images (the 120
current images of the temporal pairs), the LDA classifier selected an average of 11 features for the
56 training subsets [23]. The most frequently selected features were 4 RLS features (2 SRE, 1
LRE and 1 RLN), 1 spiculation feature, and 6 morphological features (Table 2). The classifier
achieved an average training A, of 0.90, a test A, of 0.82, and a test partial Az(°'9) of 0.32.
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For the classification of masses based on the prior single images alone, an average of 4
features were selected for the 56 training subsets. The most frequently selected features were 3
RLS features (1 SRE, 1 LRE, and 1 RP) and 1 spiculation feature. The LDA classifier achieved an
average training A, of 0.78, test A, of 0.76, and test partial A,*” of 0.24.

The difference in the test A, between the classifier based on the temporal pairs and that based
on the current images alone is statistically significant (p=0.015). The difference in the test A,
between the classifier based on the temporal pairs and that based on the prior images alone is also
statistically significant (p=0.001). The partial area index for the classifier based on the temporal
pairs is also improved compared to the classifiers based on the current or the prior images alone,
although the differences did not achieve statistical significance.

(K) Perform pilot ROC study for the design of a full-scale ROC experiment (Task 15 - final
step of the project).

We have performed a pilot study as a first step to design an observer performance experiment
with ROC methodology to evaluate the effects of computer classification on radiologists’
estimates of the likelihood of malignancy of masses. A graphical user interface was developed
on a PC to display side-by-side the temporal pairs of masses in a predesigned random order for
each observer. The likelihood of malignancy and the BI-RADS assessment of the radiologist on
each pair is automatically recorded when they select it on a slider.

253 temporal image pairs (136 malignant and 117 benign) from 95 patients containing
masses on serial mammograms were chosen from patient files and digitized. Additional pairs
containing normal structures were also included to simulate a more realistic clinical situation. The
true mass locations were identified by an experienced radiologist on all mammograms. Regions of
interest containing the corresponding masses were then extracted from the current and prior
mammograms of each temporal pair and analyzed by the CAD program. All cases eventually
underwent biopsy so that interval change was observed for most of the masses even if they were
found to be benign after biopsy. This was therefore a difficult data set for interval change analysis.

Two radiologists assessed the temporal pairs that were displayed on the display PC
workstation. They provided estimates of the likelihood of malignancy and BI-RADS assessment
without and then with CAD. The reading order of the temporal pairs was randomized for each
observer. The classification accuracy was quantified by using the area under ROC curve, A..

For this data set, the computer classifier achieved a test Az value of 0.86. The radiologists’
Az values for the likelihood of malignancy were 0.72 and 0.74 without CAD, and improved to 0.76
and 0.75, respectively, with CAD. The improvement was statistically significant (p=0.0006) for the
first radiologist. For the BI-RADS assessments, the two radiologists obtained Az values of 0.67
and 0.77 without CAD and improved to 0.73 and 0.79, respectively, with CAD. The
improvements were also statistically significant (p<0.001).

This pilot study indicates that CAD using interval change analysis may be useful for assisting
radiologists in classification of masses and thereby reducing unnecessary biopsies.

This pilot study will be the basis for our design of a full-scale ROC study. We have already
recruited 6 radiologists to participate as observers. The results, described above, show that the
study design will likely produce statistically significant results. The sample size is acceptable but
we are continuing to enlarge the data set until the ROC study design is finalized. We expect that
this ROC study can be completed within the no cost time extension year that we requested. This
type of observer study is new and unique and the outcome will be important, providing a new
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understanding of the potentials of computer aid to the radiologists in characterization of the
temporal changes of mammographic masses.

(L) Extension of the developed methods to the microcalcifications classification.

We were encouraged by the above results and we were able to start the transfer of the developed
methods for detection and classification of temporal masses to detection and classification of
temporal microcalcifciation clusters. We carried out a preliminary study, which showed promising
results and we applied for an BCRP-01, IDEA grant at the U.S. Army Medical Research and
Materiel Command. The research grant was approved and we are very enthusiastic and encouraged
that we will have the opportunity to extend the already developed methods and design new
methods for detection, classification and analysis of temporal microcalcifciation clusters.

Some preliminary results were presented at RSNA 2001 [24], and SPIE 2002 [25].

(6) Key research accomplishments in current year as a result of this grant

e  Database collection and extraction of regions of interest (Task 1).

e  Further development of methods for establishing corresponding locations in current and
previous mammograms (Task 3).

e  Obtaining hand drawn mass boundaries from radiologists and evaluation of segmentation
accuracy (Task 9).

e  Further develop methods for extracting morphological and texture features from masses
segmented from ROIs extracted from current and prior mammograms (Task 10).

e Analyze techniques for characterizing differences in these features (Task 11).

e  Evaluate the effectiveness of LDA classifiers and neural networks for classification (Task
12).

e  Evaluate the effectiveness of developed classifiers using receiver operating characteristic
methodology (Task 13)

° Identify the preferred features and classification methods (Task 14)

e  Compare the accuracy of computerized classification with the malignancy assessment of
radiologists (Task 15).

e  Evaluate usefulness of temporal features for CAD by comparison of classification based on
temporal features with classification based on features extracted from the current
mammogram alone (Task 15)

e  Perform pilot ROC study for the design of a full-scale ROC experiment (Task 15— final step
of the project).

e  Extension of the developed methods to the microcalcifications classification.

(7) Reportable Outcomes

Publications in current vear as a result of this grant

[1]1 L. Hadjiiski, H.P. Chan, B. Sahiner, N. Petrick, M. Helvie, “Automated Registration of
Breast Lesions in Temporal Pairs of Mammograms for Interval Change Analysis — Local
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(2]

(3]

[4]

(5]

(6]

Affine Transformation for Improved Localization”, Medical Physics, 28 (6), June 2001,
pp- 1070-1079.

L. Hadjiiski, B. Sahiner, H.P. Chan, N. Petrick, M. Helvie, M. Gurcan, “Analysis of
temporal changes of mammographic features: Computer-aided classification of malignant
and benign breast masses”, Medical Physics, 28 (11), November 2001, pp. 2309-2317.

L. Hadjiiski, B. Sahiner, H.P. Chan, N. Petrick, M.A. Helvie, M. Gurcan, “Analysis of
temporal change of mammographic features for computer-aided characterization of
malignant and benign masses ”, Oral Presentation at SPIE International Symposium on
Medical Imaging, San Diego, California, February 19-22, 2001, Proc. SPIE Medical
Imaging, 2001, 4322, pp.661-666.

L. Hadjiiski, B. Sahiner, H.P. Chan, N. Petrick, M.A. Helvie, “An Adaptive Similarity
Measure for Automated Identification of Breast Lesions in Temporal Pairs of Mammograms
for Interval Change Analysis”, To be presented at the 6™ International Workshop for Digital
Mammography (IWDM), Bremen, Germany, June 22 - 25, 2002, To appear in Proc. INDM
2002.

L. Hadjiiski, HLP. Chan, N. Petrick, B. Sahiner, M. Gurcan, M.A. Helvie, at al,
“Computerized Regional Registration of Corresponding Microcalcification Clusters on
Temporal Pairs of Mammograms for Interval Change Analysis”, Presented at the 87™
Scientific Assembly and Annual Meeting of the Radiological Society of North America
(RSNA), Chicago, Illinois, November 25 - 30, 2001. Radiology 2001; 221 (P): 425.

L. Hadjiiski, H.P. Chan, M. Gurcan, B. Sahiner, N. Petrick, M.A. Helvie, M. Roubidoux
“Computer-Aided Characterization of Malignant and Benign Microcalcification Clusters
Based on the Analysis of Temporal Change of Mammographic Features”, Presented at the
SPIE International Symposium on Medical Imaging, San Diego, California, February 23-28,
2002. To appear in Proc. SPIE Medical Imaging 2002.

Copies of publications are enclosed with this report.

(8) Conclusion

During this year, we have continued the development of the regional registration technique.

The adaptive similarity measure (ASM) improves the localization of the corresponding mass on the
prior mammogram. 179 temporal pairs of mammograms containing biopsy-proven masses were
used for evaluation of the detection acuracy. 86% of the estimated lesion locations resulted in an
area overlap of at least 50% with the true lesion locations. The average distance between the
estimated and the true centroids of the lesions on the prior mammogram was 4.5+6.7 mm. In
comparison, the correct localization and the average distance using a conventional correlation
similarity measure were 84% and 4.9+ 7.0 mm, respectively. The registration accuracy of the
current method has been improved in comparison with that without ASM. This result indicates that
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our technique is a promising approach for identification of corresponding lesions on temporal pairs
of mammograms and thus may be used as a basis for analysis of interval change on mammograms.
We will continue to enlarge the data set and improve the registration method in the coming year.

To evaluate the accuracy of computer segmentation of masses, 239 regions of interest
containing the corresponding masses were identified by MQSA radiologist on the current and prior
mammograms of the temporal pair. The masses were automatically segmented using a K-means
clustering algorithm and active contour model. Additionally, hand drawn mass boundaries from
radiologists were obtained and compared with the computer segmentations. The initial mass
segmentation by the K-means clustering algorithm was satisfactory (average area overlap of 40%,
average Hausdorff distance of 5.58 mm, and average Hausdorff distance of 2.19 mm averaged over
239 ROISs). The active contour model further improved the accuracy of mass segmentation (average
Area overlap of 67%, average Hausdorff distance of 4.49 mm, and average Hausdorff distance of
1.27 mm averaged over 239 ROIs ). The active contour model is therefore useful for precise mass
segmentation.

For the task of feature extraction, we evaluated 35 features (20 texture, 12 morphological and
3 spiculation) extracted from each mass. Additional difference features were obtained by
subtracting the features of the prior mass from those of the current mass. Therefore, 35 difference
features were derived from the 20 texture, 12 morphological and 3 spiculation features. The feature
space for each temporal pair consisted of the texture, spiculation and morphological features from
both the prior and the current mammograms and the difference features. These features were
evaluated for their effectiveness in classification of malignant and benign temporal masses as well
as detection of temporal change.

We designed a new classification scheme allowing direct merge of current and prior
information. The input feature space to the classifier included the current, prior and difference
features. This allowed the classifier to choose the individual current and prior features or the
difference features in order to obtain the best combination and merge of the features for high
classification accuracy and optimal detection of interval change. It was found that the difference
RLS texture features and spiculation features were useful for identification of malignancy in
temporal pairs of mammograms. The information on the prior image was important for
characterization of the masses; 5 out of the 10 selected features contained prior information. We
found that the mass size descriptors were not discriminatory features for these difficult cases
because many of the benign masses also grew over time. In comparison with the classification
based on image information from the current images alone, the temporal change information
significantly (p=0.015) improved the accuracy for classification of the masses in terms of the total
area under the ROC curve (A,). The partial area under the ROC curve for the classifier based on
the temporal pairs (A" = 0.37) is also improved compared to the classifier based only on the
current images (A,%? = 0.32), although the difference did not achieve statistical significance.

We performed a pilot study for the design of observer performance experiments with ROC
methodology to evaluate the effects of computer classification on radiologists’ estimates of the
likelihood of malignancy of masses. Two radiologists read a data set of temporal pairs. For this
data set, the computer classifier achieved a test Az value of 0.86. The radiologists’ Az values for
the likelihood of malignancy were 0.72 and 0.74 without CAD, and improved to 0.76 and 0.75,
respectively, with CAD. The improvement was statistically significant (p=0.0006) for the first
radiologist. For the BI-RADS assessments, the two radiologists obtained Az values of 0.67 and
0.77 without CAD and improved to 0.73 and 0.79, respectively, with CAD. The improvements
were also statistically significant (p<0.001). This pilot study will be the basis for our design of a
full-scale ROC study to evaluate the effects of CAD of interval changes on the performance of
radiologists.
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Further study is underway to develop a feature matching method to improve lesion
localization within the search region. We will continue the development of automated method to
extract and analyze features extracted from corresponding masses on a temporal pair of
mammograms for analysis of the temporal changes.

We were able to start the transfer of the developed methods for detection and classification of
temporal masses to detection and classification of temporal microcalcifciation clusters. We carried
out a preliminary study, which showed promising results and we applied for an IDEA grant at the
U.S. Army Medical Research and Materiel Command. The research grant was approved and we
will have the opportunity to extend the already developed methods and design new methods for
detection, classification and analysis of temporal microcalcifciation clusters.
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Automated registration of breast lesions in temporal pairs of mammograms
for interval change analysis—local affine transformation
 for improved localization
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Analysis of interval change is important for mammographic interpretation. The aim of this study is
to evaluate the use of an automated registration technique for computer-aided interval change
analysis in mammography. Previously we developed a regional registration technique for identify-
ing masses on temporal pairs of mammograms. In the current study, we improved lesion registra-
tion by including a local alignment step. Initially, the lesion position on the prior mammeogram was
estimated based on the breast geometry. An initial fan-shaped search region was then defined on the
prior mammogram. In the second stage, the location of the fan-shaped region on the prior mam-
mogram was refined by warping, based on an affine transformation and simplex optimization in a
local region. In the third stage, a search for the best match between the lesion template from the
current mammogram and a structure on the prior mammogram was carried out within the search
region. This technique was evaluated on 124 temporal pairs of mammograms containing biopsy-
proven masses. Eighty-seven percent of the estimated lesion locations resulted in an area overlap of
at least 50% with the true lesion locations and an average distance of 2.4+2.1 mm between their
centroids. The average distance between the estimated and the true centroid of the lesions on the
prior mammogram over all 124 temporal pairs was 4.2+5.7 mm. The registration accuracy was
improved in comparison with our previous study that used a data set of 74 temporal pairs of
mammograms. This improvement in accuracy resulted from the improved geometry estimation and

the local affine transformation. © 2001 American Association of Physicists in Medicine.

[DOI: 10.1118/1.1376134]

Key words: mammography, interval change, computer-aided diagnosis, breast cancer, affine

transformation

1. INTRODUCTION

Mammography is currently the most effective method for
early breast cancer detection.”? One of the important tech-
niques used by radiologists in mammographic interpretation
to detect developing malignancy is analysis of interval
changes.>* A variety of computer-aided diagnosis (CAD)
techniques have been developed to detect mammographic
abnormalities and to distinguish between malignant and be-
nign lesions. We are studying the use of CAD techniques to
assist radiologists in interval change analysis.

Sallam et al.’ have proposed a warping technique for
mammogram registration based on manually identified con-
trol points. A mapping function was calculated for mapping
each point on the current mammogram to a point on the prior
mammogram. Brzakovic et al.® have investigated a three-
step method for comparison of the most recent and the prior
mammograms. They first registered two mammograms using
the method of principal axis, and partitioned the current
mammogram using a hierarchical region-growing technique.
Translation, rotation, and scaling were then used for registra-
tion of the partitioned regions. Vujovic et al.” have proposed
a multiple-control-point technique for mammogram registra-
tion. They first determined several control points indepen-
dently on the current and prior mammograms based on the
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intersection points of prominent anatomical structures in the
breast. A correspondence between these control points was
established based on a search in a local neighborhood around
the control point of interest.

The previous techniques depend on the identification of
control points. However, because the breast is mainly com-
posed of soft tissue that can change over time, there are no
obvious landmarks on mammograms. The crossing line
structures are often fibrous tissue from different depths of the
breast which overlap in a projection image. These crossing
points are not invariant landmarks on different mammo-
grams. Because of the elasticity of the breast tissue, there is
large variability in the positioning and compression used in
mammographic examination. As a result, the relative posi-
tions of the breast tissues projected onto a mammogram vary
from one examination to the other. Techniques that depend
on identification of control points may not be generally ap-
plicable to registration of breast images.

Gopal et al.¥'% and Hadjiiski et al'! have developed a
multistage technique that defines the transformation to lo-
cally map the position of the mass on a current mammogram
to that of the prior mammogram. A local search for the mass
is then performed on the prior mammogram. Good et all?
also have developed a technique that defines a transforma-

© 2001 Am. Assoc. Phys. Med. 1070




1071 Hadjiiski et al.: Automated registration of breast lesions
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FiG. 1. Block diagram of the regional registration technique.

tion to map all points from the current mammogram onto a
prior mammogram. The current mammogram is then sub-
tracted from the prior mammogram.

The goal of our research is to develop a technique for
computerized analysis of temporal differences between a
mass on the most recent mammogram and a prior mammo-
gram of the same view. The computer algorithm will assist
radiologists in quantifying interval changes and thus distin-
guishing between benign and malignant masses for CAD.
When fully developed, the technique will be applied to a
mass on the current mammogram either identified by the
radiologist or by an automated mass detection program, thus
the interval change analysis can be an integrated part of an
automated CAD system. In this study, we focused on the
development of an automated registration technique that lo-
calizes the corresponding mass on the prior mammogram
when the mass on the current mammogram is known. There-
fore, we used radiologist-identified mass location on the cur-
rent mammogram as a starting point and that on the prior
mammogram as the ground truth for evaluation of the regis-
tration technique. A local registration technique was devel-
oped based on an affine transformation and simplex optimi-
zation and its usefulness in improving the localization of the
mass on the prior mammogram was investigated.

Il. REGISTRATION TECHNIQUE

A multistage regional registration technique was devel-
oped for identifying corresponding masses on temporal pairs
of mammograms. The block diagram of the regional regis-
tration technique is shown in Fig. 1. In the first stage, an
initial fan-shaped search region was defined on the prior
mammogram based on the mass location on the current
mammogram. In the second local alignment stage, the loca-
tion of the search region on the prior mammograms was first
refined by maximizing a correlation measure between a tem-
plate of the fan-shaped region centered at the mass extracted
from the current mammogram and the breast structures on
the prior mammogram. The affine transformation in combi-
nation with simplex optimization was then employed to warp
this local region and further improve the correlation. In the
final stage, a search for the best match between the lesion
template from the current mammogram and a structure on
the prior mammogram was carried out within the refined
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“Prior (1995)

Current (1996)

FIG. 2. An example of a pair of current and prior mediolateral oblique
mammograms in our data set. The arrows point to the masses on the current
and the prior mammograms. The white lines represent the breast boundary
determined by the automated boundary detection procedure.

search region. A more detailed explanation for each of the
stages will be presented in the following subsections.

A. Stage 1—lInitial estimate of search region

We have modified our previous method to define a fan-
shaped search region on the prior mammogram. Initially an
automated procedure is used to detect the breast boundary on
the mammograms (Fig. 2). The location of the mass on the
current mammogram is determined in a polar coordinate sys-
tem with the nipple as the origin. By using the radial distance
R, between the nipple and mass centroid, [NM], an arc is
drawn which intersects the breast boundary at points A and
B (Fig. 3). Three angles are estimated at the radial distance
R ' The angle B between NM and NA, the angle ¢ be-
tween NM and NB, and the angle 6 between NA and NB
(6=B+¢). The location of the mass is determined by R,
and the angle B or ¢. The angle @ is the breast width at the
radial distance R, . Using the radial distance R to draw
an arc centered at the nipple centroid on the prior mammo-
gram, N’, the two intersect points A’ and B’ with the breast
boundary on the prior mammogram are determined. The

Prior

Current

FiG. 3. Initial estimation of the mass location on the prior mammogram,
based on the nipple-mass centroid distance and an angular distance from the
breast periphery on the current mammogram.
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Current

Prior

FiG. 4. Definition of an initial fan-shaped search region on the prior mam-
mogram and a fan-shaped template on the current mammogram.

angle 6, between the axes [N'A’| and N'B’| is estimated.
An angular scaling factor @ can be calculated as the ratio of
the prior and the current angles, a=6,/6.

In order to predict the angular location of the mass on the
prior mammogram, the smaller angle between B and ¢ is
selected as the angular coordinate of the mass on the current
mammogram. The smaller angle is used because we found
by experiment that it produces a smaller angular deviation
error than using the larger angle. The angular deviation error
is defined as the angle between the axis connecting the
nipple and the true mass centroid and the axis connecting the
nipple and the predicted mass centroid on the prior mammo-
gram. The selected angle, multiplied by the angular scaling
factor a, is used as the predicted angle from the correspond-
ing axis on the prior mammogram. The radial distance R,
is used to predict the radial position of the mass on the prior
mammogram,

An initial fan-shaped search region is then defined on the
prior mammogram centered at the predicted location of the
mass centroid (Fig. 4). The size of the fan-shaped region is
estimated previously'? to have the form e=k; +ky /R, and
&=k, where 2€ determines the angular width and 26 deter-
mines the radial length of the fan-shaped region. The con-
stants k,,k,, and k; were chosen experimentally such that
the estimated fan-shaped regions will essentially include all
mass centroids on the prior mammograms. A fan-shaped
template centered at the mass is also defined on the current
mammogram. More details on defining the fan-shaped region
can be found in Appendix A and in Ref. 10.

B. Stage 2—Refinement of search region by warping
and alignment

The second stage combined two procedures. First, the lo-
cation of the search region on the prior mammograms was
refined by maximizing a correlation measure between the
fan-shaped template extracted from the current mammogram
and the breast structures on the prior mammogram. The tem-
plate was shifted pixel by pixel within the initial fan-shaped
search region and a correlation measure was calculated at
each pixel location. The pixel location providing the maxi-
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x,y)

(x’,y")

FIG. 5. The fan-shaped template (x,y) and the warped fan-shaped template
(x',y") by the affine transformation.

mum correlation is used as the center of a refined search
region. This is basically a template matching operation. Sec-
ond, the affine transformation in combination with simplex
optimization was iteratively used to warp the fan-shaped
template and further maximize the correlation measure with
the breast structures on the prior mammogram.

1. Affine transformation

An affine transformation'® is a linear transformation com-
bining scaling, rotation, and translation. A two-dimensional
affine transformation is defined as follows:

x'=ax+by+tc,

y'=dx+ey+f, ()
where (x,y) are the original coordinates, (x’,y') are the
transformed coordinates, and a, b, d, e, c, f are the transfor-
mation coefficients. The coefficients a, b, d, e determine a
scaling and a rotation, and the coefficients ¢ and f determine
a translation. The result of applying the affine transformation
of Eq. (1) in combination with the simplex optimization (de-
scribed below) to refine the fan-shaped search region is
shown in Fig. 5. Since the affine transformation is linear, the
transformed object is linearly resized and rotated. This can
be observed from the edges of the bounding box of the fan-
shaped region (white box in Fig. 5). After the transformation
the edges are still straight lines, however, the corner angles
are different from 90 degrees and the lengths of the lines are
linearly scaled.

2. Nonlinear simplex optimization

The nonlinear simplex optimization by Nelder and
Mead'*!’ is used to adjust the coefficients a, b, ¢, d, e,
and f and to warp the fan-shaped template, thereby maximiz-
ing the correlation between the template and a breast struc-
ture on the prior mammogram. This optimization defines a
hyper-polygon. For each vertex an error function is calcu-
lated. The polygon is then ¢‘rolled”’ towards the minimum.
The movement of the polygon (towards the minimum) is
obtained by reflection in the direction opposite to the vertex
with the maximal error. Figure 5 shows the result of appli-
cation of the affine transformation whose coefficients were
obtained by the nonlinear simplex optimization. A more de-
tailed discussion on this optimization method can be found in
Appendix B and Refs. 14 and 15.
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Current

Prior

FIG. 6. A refined search region was defined on the prior mammogram. A
search for the best match between the mass template from the current mam-
mogram and a structure on the prior mammogram was carried out within the
refined search region. (A—mass template on current mammogram,
B—warped fan-shaped region from current mammogram, C—refined search
region).

3. Stage 3—Mass template matching and
localization of corresponding lesion

At this stage a new search region with a reduced size is
defined on the prior mammogram (Fig. 6). The reduced size
of the search region is determined experimentally by itera-
tive adjustment of the size of the rectangular region targeting
the improvement of the final result. A template containing
the mass is extracted from the current mammogram. The
mass location on the prior mammogram is then determined
by maximizing the correlation between the template and a
structure within the search region (Fig. 7).

Ill. DATA SET

A set of 124 temporal pairs of mammograms containing
biopsy-proven masses on the current mammograms was used
to examine the performance of this approach. Different
mammographic views of the same breast were also included.
There were a total of 221 mammograms obtained from 54
cases. Temporal pairs were formed using the temporal se-

Current

Fic. 7. Final identification of the corresponding mass on the prior mammo-
gram. (A—Mass template on current mammogram, B—Refined search re-
gion, C—Identified mass location).
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quence from the corresponding view. Some cases contained
mammograms of multiple years and a combination of the
mammograms from different prior years with the current-
year mammogram formed multiple temporal pairs. Thirty
five of the mammograms were digitized with a LUMISYS
DIS-1000 laser scanner at a pixel resolution of 100 mx100
um and 4096 gray levels. The digitizer was calibrated so that
gray level values were linearly proportional to the optical
density (OD) within the range of 0.1-2.8 OD units, with a
slope of 0.001 OD/pixel value. Outside this range, the slope
of the calibration curve decreased gradually. The OD range
of the digitizer was 0—3.5. The remaining 186 mammograms
were digitized with a LUMISCAN 85 laser scanner at a pixel
size of 50 umX50 pum and 4096 gray levels. The digitizer
was calibrated so that the gray level values were linearly
proportional to the OD within the range of 0—-4 OD units,
also with a slope of 0.001 OD/pixel value. Output from both
digitizers was linearly converted so that large pixel value
corresponded to a low-optical density. In order to process the
mammograms digitized with these two different digitizers,
the images were first averaged using a filter that has constant
weights over the entire filter kernel and then were down-
sampled. This filter will be referred to as a box filter. The
images digitized with the LUMISCAN 85 digitizer were av-
eraged with a 16X 16 box filter and then were down-sampled
by a factor of 16. The images digitized with the LUMISYS
DIS-1000 digitizer were averaged with an 8 X8 box filter and
then were down-sampled by a factor of 8. Therefore, all re-
sulting images had a pixel size of 800 xmX800 um.

The 54 cases contained 53 biopsy proven and one
follow-up masses. The 221 mammograms contained differ-
ent mammographic views and multiple years of the masses
including the year when the biopsy was performed. Of the
124 temporal pairs of mammograms 73 were malignant and
51 benign. A malignant temporal pair consists of a biopsy
proven malignant mass or a mass that was followed up and
was found to be malignant when a biopsy was performed in
a future year. Of the 124 temporal pairs of mammograms, 63
were CC-view pairs, 48 were MLO-view pairs, and 13 were
lateral-view pairs. A Mammography Quality Standards Act
(MQSA)-approved radiologist read the original mammogram
to identify the mass and provide description of its character-
istics. The radiologist defined a bounding box around the
mass and marked the nipple location on every film.

The radiologist also measured the mass sizes, defined as
the longest dimension of the mass, both on the current and
prior mammograms. In Figs. 8(a) and 8(b) the mass sizes on
the current mammograms were plotted against those on the
prior mammograms for the malignant and the benign tempo-
ral pairs, respectively. Only 103 temporal pairs were plotted
(54 malignant and 49 benign) due to the fact that the masses
on the prior mammograms in the remaining 21 temporal
pairs were too subtle for the radiologist to estimate their
boundaries. On average the malignant masses appear to have
a larger increase in size than the benign masses. The mean
increase in size from prior to current for the malignant
masses is 4.2 mm compared to 1.6 mm for the benign masses
(p=0.008). The correlation coefficient is 0.71 for the malig-
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FIG. 8. Mass sizes measured by an MQSA-approved radiologist on the cur-
rent mammograms plotted against those on the prior mammograms for (a)
54 malignant and (b) 49 benign temporal pairs. The diagonal line on the
graph represents the case when the current and the prior mass sizes are
identical. The dashed lines are the linear regression lines defined by y
=0.469x+3.012 for (a) and by y=0.638x+3.242 for (b). The correlation
coefficient for malignant masses is 0.71 and for benign masses is 0.83.

nant masses and 0.83 for the benign masses [Fig. 8(a) and
8(b)1.

The radiologist also rated the visibility of the masses on
the mammograms relative to those encountered in clinical
practice on a 10-point scale, with one represents the most
obvious and 10 the subtlest masses. The visibility of the
masses on the current mammogram is plotted against those
on the prior mammogram in Fig. 9 for the 73 malignant and
51 benign temporal pairs. Generally, the malignant masses
were less visible on the prior mammograms while the vis-
ibility of the benign masses was found to be more similar.
The mean difference in visibility between the prior and the
current mammograms for the malignant masses is 2.8 com-
pared to 0.7 mm for the benign masses (p=0.0002). The
correlation coefficient is 0.06 for malignant masses and 0.54
for benign masses [Figs. 9(a) and 9(b)]. For most of the
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Mass Visibility in Current Mammogram
(b) '

FI1G. 9. Visibility of the masses on the current mammogram plotted against
those on the prior mammogram for (a) malignant and (b) benign temporal
pairs. The visibility was rated on a 10-point discrete scale (1=most obvious,
10=subtlest). Because many of the data points overlap, we indicate the
number of points with the same rating by a number next to the symbol (m or
b). The diagonal line on the graph represents the case when the current and
the prior mass sizes are identical. The dashed lines are the linear regression
lines defined by y=0.055x+7.44 for (a) and by y=0.658x+2.138 for (b).
The correlation coefficient for malignant masses is 0.06 and for benign
masses is 0.54.

temporal pairs the time interval between the current and the
prior mammogram was 12 months (Fig. 10).

IV. EVALUATION METHODS

The accuracy of the multistage regional registration was
analyzed in terms of two measures. The first measure is the
overlap area between the estimated and the true lesions on
the prior mammogram. The fractions of registered temporal
pairs that could provide an accuracy of over 50% area over-
lap and over 75% area overlap were examined. The second
measure is the average Euclidean distance between the cen-
troids of the estimated and the true lesion locations.
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FiG. 10. Temporal interval between the current and the prior mammograms
for the 124 temporal pairs in our data set.

V. REGISTRATION RESULTS
A. Stage 1—lInitial estimate of search region

At this stage an initial estimation of the mass location on
the prior mammogram was carried out based on the geo-
metrical position of the mass on the current mammogram.
Based on observation of the radial deviation errors and the
angular deviation errors, the fan-shaped search region was
estimated to be €= 0.25+ 5/R, radians and 6=20 mm. This
definition of the fan-shaped search region resulted in an av-
erage search area of 1462 mm? on the prior mammograms.
For the 124 temporal image pairs used in this study, the
Euclidean distance between the initial estimate of the cen-
troid location of the corresponding structure on the prior
mammogram and the center of the bounding box of the mass
provided by the radiologist was estimated. For the 124 tem-
poral image pairs, the average Euclidean distance error of the
initial estimate was 8.4*5.4 mm. The error distributions for
both the malignant and the benign pairs are shown in Fig. 11.
At this initial stage, 57% of the estimated lesion locations
resulted in an area overlap of at least 50% with the true
lesion locations and 27% resulted in an area overlap of at
least 75% (Fig. 12).

B. Stage 2—Refinement of search region by warping
and alignment

At the second stage, the location of the search region on
the prior mammogram was first refined by maximizing a
correlation measure between the fan-shaped template ex-
tracted from the current mammogram and the breast struc-
tures on the prior mammogram. The affine transformation in
combination with simplex optimization was then employed
to warp this local region. For the 124 temporal image pairs,
the average Euclidean distance error after the second stage
was 7.5+5.4 mm. At this stage, 59% of the estimated lesion
locations resulted in an area overlap of at least 50% with the
true lesion locations, and 36% resulted in an area overlap of
at least 75%. The average Euclidean distance error at this
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FiG. 11. Distribution of Euclidean distance error between the initial estimate
of the mass centroid location on the prior mammogram and the center of the
bounding box of the mass provided by the radiologist for the malignant and
benign pairs after the first detection stage.

stage was reduced compared to that of the first stage, how-
ever, it did not achieve statistical significance (p=0.07).

After the simplex optimization, the search region was re-
duced to a constant size of 24 mmX24 mm (=576 mm?)
centered at the refined fan-shaped region for every prior
mammogram.

C. Stage 3—Mass template matching and localization
of corresponding lesion

At this final stage, a search for the best match between the
lesion template from the current mammogram and a structure
on the prior mammogram was carried out within the refined
search region. This template matching resulted in 87% of the
estimated lesion locations having an area overlap of at least
50% with the true lesion locations. The distributions of the
Euclidean error for the malignant and the benign temporal
pairs are shown in Fig. 13. The average distance between the
estimated and the true centroids of the lesions on the prior
mammogram for all 124 pairs was 4.2*5.7 mm with a maxi-
mum of 31.6 mm. These results are summarized in Table L
For the 87% of the temporal pairs with 50% overlap, the
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FIG. 12. Distribution of the area overlap between the estimated and the true
lesion locations for 124 temporal pairs after the first detection stage.
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FiG. 13. Distribution of Euclidean distance error between the estimate of the
mass centroid location on the prior mammogram and the center of the
bounding box of the mass provided by the radiologist for the malignant and
benign pairs after the final detection stage.

average distance between the estimated and the true cen-
troids of the lesions on the prior mammogram was 2.4+2.1
mm with a maximum of 10.2 mm. When a more stringent
criterion of 75% overlap is imposed, 82% of the masses on
the prior mammograms are considered to be localized (Fig.
14). For the 82% of the temporal pairs with 75% overlap, the
average distance between the estimated and the true cen-
troids of the lesions on the prior mammogram was 2.2+1.9
mm with a maximum of 10.2 mm. The average Euclidean
distance error at this stage was significantly reduced com-
pared to the error of the first stage (p=0.000001) and the
error of the second stage (p=0.000001).

D. Study of the importance of the stage 2 procedures

The effect of the two procedures at Stage 2 on the regis-
tration accuracy was studied. We removed them one at a
time and evaluated the registration results. When the first
correlation procedure was removed, the average Euclidean
distance error increased to 5.6+8.2 mm in the final stage.
Only 81% of the estimated lesion locations resulted in an
area overlap of at least 50% with the true lesion locations
and 75% resulted in an area overlap of at least 75% with the
true lesion locations. When the second warping procedure
was removed, the average Euclidean distance error increased
to 5.0+6.3 mm in the final stage. Only 82% of the estimated

TaBLE L. The Euclidean distance between the true and the estimated cen-
troids of the mass on the prior mammogram for the three detection stages.

Overall 50% overlap 75% overlap
Mean distance 8.4 mm 5.6 mm 4.5 mm
Stage 1 Standard. Deviation. 5.4 mm 2.8 mm 2.6 mm
Max. distance 29.0 mm 16.2 mm 13.8 mm
Mean distance 7.5 mm 4.9 mm 3.9 mm
Stage 2 Standard. Deviation. 5.4 mm 3.0 mm 2.6 mm
Max. distance 32.0 mm 16.9 mm 11.6 mm
Mean distance 42 mm 2.4 mm 2.2 mm
Stage 3 Standard. Deviation 5.7 mm 2.1 mm 1.9 mm
Max. distance 31.6 mm 10.2 mm 10.2 mm
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FiG. 14. Distribution of the area overlap between the estimated and the true
lesion locations for 124 temporal pairs after the final detection stage.

lesion locations resulted in an area overlap of at least 50%
with the true lesion locations and 76% resulted in an area
overlap of at least 75% with the true lesion locations.

Vi. DISCUSSION

The approach proposed here has simplified the first stage
compared to our previous method.!® In the previous method,
the distances between the nipple and the breast centroid on
the current and prior mammograms were determined and
used to estimate a radial scaling factor. The angular location
of the mass was measured from the nipple—breast centroid
axis. A global alignment procedure was used for determina-
tion of the breast centroids. With our new approach we
eliminated the scaling for the radial distance between the
nipple and the mass location of the prior mammogram. The
breast periphery was used as a reference for the estimation of
the angular position of the mass. Therefore, there was no
need to determine the breast centroids on the current and the
prior mammograms and the global alignment procedure
could be eliminated. This is possible because the local align-
ment step provides better compensation for the displacement
of the corresponding masses on the current and the prior
mammogram caused by different compression and position-
ing of the breast.

It was found that the estimation of the angular position
from the breast periphery allowed more precise localization
of the mass position on the prior mammogram compared to
our previous method where the angular position of the mass
was estimated based on the nipple—breast centroid axis.!”
There is a large variability in the estimation of the breast
centroid location because the extend of the breast imaged on
the mammogram at the chest wall and at the axillary tail in
the MLO view depends on the breast positioning and com-
pression. This causes an uncertainty in defining the region to
calculate the breast centroid. In the previous study using 74
temporal pairs, the estimated Euclidean distance error at the
first stage was 9.8226.0 mm. The fan-shaped search region
was defined as €=0.35+5/r, resulting in an average area of
1865 mm? for the fan-shaped search region. In the current



1077 Hadjiiski et al.: Automated registration of breast lesions
; 2::,’,,“ Malignant
10 1
9 B
2 81
3 7]
o 81
> 5
9 41
= 3
2..
1 -
0-
1 2 3 4 5 6 7 8 9
Pair number
30 — e
w—Prior Malignant
25 ——3 Current L

N
o

Mass size [mm]
S @

o
"

I ]

1 2 3 4 5 6 7 8 9
Pair number

o
[

FiG. 15. The visibility and the mass size of nine malignant temporal pairs
having area overlap less than 50%. The radiologist was unable to define the
prior mass sizes of pairs 6 and 9 due to the subtlety of these masses.

study, the estimated Euclidean distance error at the first stage
was reduced to 8.4+5.4 mm even though the data set was
increased to 124 temporal pairs of mammograms. This al-
lows the fan-shaped region to be reduced to €=0.25+5/r,
resulting in an average fan-shaped search area of 1462 mm?
on the prior images. The reduction of the search area im-
proves the chance of correctly localizing the mass on the
prior mammogram.

The second stage combined two procedures: First the lo-
calization of the search region on the prior mammograms
was refined by maximizing a correlation measure between
the fan-shaped template extracted from the current mammo-
gram and the breast structures on the prior mammogram. The
affine transformation in combination with simplex optimiza-
tion was then employed to warp and locally align the tem-
plate with the breast structures. Both procedures improved
the detection process. When one of these procedures was
removed the registration results deteriorated, as discussed in
the Results section.

With these improvements, the accuracy of the current re-
gional registration technique is improved over the previous
method.!® The current technique produced an average Eu-
clidean distance error of 4.2*5.7 mm, compared to 5.4£7.5
mm when the previous technique was applied to the current
data set. This difference is statistically significant (p=0.03).
82% of the estimated lesion locations resulted in an area
overlap of at least 75% with the true lesion locations com-
pared with 72% when applying the previous technique to the
current data set. It is interesting to note that, of the 21
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FiG. 16. The visibility and the mass size of seven benign temporal pairs
having area overlap less than 50%.

“‘masses’” on the prior mammograms that the experienced
radiologist could not confidently define the mass and mea-
sure its size, our registration technique localize 19 of them
with an area overlap greater than 50%.

The average distance between the estimated and the true
centroid of the lesions on the prior mammogram for the sub-
set of temporal pairs having 50% overlap is about half of that
of the entire data set (Table I). The maximum distance for
this subset is about 1/3 of that for the entire data set.

With the current regional registration technique, 16 tem-
poral pairs (13% of 124 temporal pairs) have an area overlap
less than 50%. Twelve of the 16 computer estimated loca-
tions do not overlap at all with the radiologist’s identified
locations, and the other four pairs have an overlap between
1% and 49%. Seven of them are benign and nine are malig-
nant. A major cause of the misregistration was that the mass
was small and subtle and a breast structure within the search
region had a higher correlation with the mass template from
the current mammogram. Figures 15 and 16 show the visibil-
ity ratings and sizes of these misregistered masses. Eight of
the nine misregistered malignant masses have visibility rat-
ings of 9 or 10 and sizes below 5 mm. The misregistered
benign masses are somewhat more obvious and larger in
sizes than the malignant ones. Since many of the masses on
the prior mammograms were not interpreted as a mass with-
out reference to the current mammograms, the automatic reg-
istration with template matching would be difficult with
these masses if the search region contains normal, but dense
breast structures. We are currently investigating the applica-
tion of local mass detection in the search region to focus
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template matching to a few suspicious arcas. Morphological
and, texture features will be extracted from the potential mass
areas to provide additional matching information in the fea-
ture space.

The interval change analysis, when fully developed, will
be one of the functions provided in an integrated CAD sys-
tem. The mass on the current mammogram can be detected
by an automated mass detection algorithm or identified by a
radiologist. The CAD system will then analyze whether the
mass is an existing or a newly developed lesion and will
estimate its likelihood of malignancy. We are developing
methods for characterization of malignant and benign masses
based on analysis of interval changes in the mass features.!®
Investigation of criteria to determine whether a mass exists
on the prior mammogram is underway. If the mass is a newly
developed lesion on the current mammogram, it will then
undergo a single-exam analysis by the CAD system.

Vil. CONCLUSION

We are developing an automated registration technique
for analysis of interval change of a mass from a previous
mammographic exam to the current one. In this study we
found that a local affine transformation in combination with
nonlinear simplex optimization can improve the localization
and reduce the size of the search region. With the improved
method, 87% of the estimated lesion locations in 124 ran-
domly selected temporal pairs resulted in an area overlap of
at least 50% with the true lesion locations. When the thresh-
old for correct localization was set to 75% area overlap, 82%
of the temporal pairs still exceeded this threshold. The aver-
age distance between the estimated and the true centroids of
the lesions on the prior mammogram over all pairs was 4.2
+5.7 mm. The registration accuracy of the current method
has been improved in comparison with that of our previous
method'® even though the data set was increased from 74
pairs to 124 pairs. This improvement is obtained mainly
from the second stage affine transformation and simplex op-
timization. Additional studies are currently underway to de-
velop a feature matching method to further improve lesion
localization. '
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APPENDIX A: DEFINITION OF THE FAN-SHAPED
REGION ON THE PRIOR MAMMOGRAM

Refer to Figs. 3 and 4, the fan-shaped region on the prior
mammogram is drawn based on the nipple centroid on the
prior mammogram, N’, as the center of the coordinate sys-
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tem. The two bounding arcs are drawn using the radial dis-
tances R+ & and R_,.— &, both centered at N'. The two
sides of the fan-shaped region are bounded by two radial
lines that form angles € and — € with the line [N'M’|. Thus
the initial fan-shaped search region is centered as the pre-
dicted location of the mass centroid M’ on the prior mam-
mogram (Fig.4).

The constants k;, k,, and k3 were chosen experimentally
based on analysis of the angular deviation errors and the
corresponding radial deviation errors for the 124 temporal
pairs. The radial deviation error is defined as the difference
between the predicted and the true distance of the mass from
the nipple on the prior mammogram. The constants k,, k,
are obtained in such a way that € is the smallest upper bound
that can enclose all angular deviation errors for all radial
distances (R_,;) and all temporal pairs. The selection of the
parametric form of € was discussed in detail in Ref. 10. It
reduced € at larger R_,.. The constant k; was chosen to be
equal to the maximum radial deviation error.

APPENDIX B: SIMPLEX OPTIMIZATION

An optimization problem can be defined as an error func-
tion that has to be minimized by iterative selection of the
values of the function parameters n. We can define n+1
dimensional space, where n dimensions (degree of freedom)
correspond to the error function parameters, and one dimen-
sion is the error function itself. When the optimization func-
tion is calculated for all possible values of the n parameters,
and error surface in (n+ 1)-dimensional space will be ob-
tained. Usually the error functions for the real world appli-
cations are complex and nonlinear and the corresponding
error surfaces contain local minima.

The nonlinear simplex optimization by Nelder and
Mead'*!5 defines a hyper-polygon with n+1 vertexes in a
(n+ 1) dimensional space. For each vertex the error function
is calculated. The polygon is then ‘‘rolled’’ towards the
minimum. The movement of the polygon (towards the mini-
mum) is obtained by reflection in the direction opposite to
the vertex (K) with the maximal error. To achieve this the
center of masses (L) of the hyper-polygon vertexes is calcu-
lated. A line KL connects the center of the masses with the
vertex with the maximal error. The new vertex (K') is ob-
tained by central projection of the vertex K on the line KL
with center L and |K'L|{=¢|KL|. The coefficient ¢ deter-
mines how far the new vertex will be projected and what the
corresponding size of the hyper-polygon will be. The larger
the hyper-polygon is, the easier it will avoid (‘‘roll over’’)
the local minima on the error surface. However, it will be
difficult to get close to the global minimum if its size is too
large. On the other hand, although a small hyper-polygon
will allow it to get to a close proximity to the global mini-
mum, it is more likely to be trapped in a local minimum. The
magnitude of the coefficient ¢ is controlled adaptively by the
Nelder and Mead algorithm. In case a large reduction in the
error is detected for the new vertex, the magnitude of ¢ is
increased. In case the error is found to be increased for the
new vertex, the magnitude of ¢ is decreased.
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The this paper, the nonlinear simplex optimization by
Nelder and Mead was used to adjust the coefficients a, b, c,
d, e, and f and to warp the fan-shaped template, thereby
maximizing the correlation (C) between the template and a
breast structure on the prior mammogram. Therefore, the di-
mensionality of the space was 7: Six parameters to be ad-
justed and the error function to be minimized was defined as

1-C.
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Analysis of temporal changes of mammographic features: Computer-aided
classification of malignant and benign breast masses
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A new classification scheme was developed to classify mammographic masses as malignant and
benign by using interval change information. The masses on both the current and the prior mam-
mograms were automatically segmented using an active contour method. From each mass, 20 run
length statistics (RLS) texture features, 3 speculation features, and 12 morphological features were
extracted. Additionally, 20 difference RLS features were obtained by subtracting the prior RLS
features from the corresponding current RLS features. The feature space consisted of the current
RLS features, the difference RLS features, the current and prior speculation features, and the
current and prior mass sizes. Stepwise feature selection and linear discriminant analysis classifica-
tion were used to select and merge the most useful features. A leave-one-case-out resampling
scheme was used to train and test the classifier using 140 temporal image pairs (85 malignant, 55
benign) obtained from 57 biopsy-proven masses (33 malignant, 24 benign) in 56 patients. An
average of 10 features were selected from the 56 training subsets: 4 difference RLS features, 4 RLS
features, and 1 speculation feature from the current image, and 1 speculation feature from the prior,
were most often chosen. The classifier achieved an average training A . of 0.92 and a test A, of 0.88.
For comparison, a classifier was trained and tested using features extracted from the 120 current
single images. This classifier achieved an average training A of 0.90 and a test A, of 0.82. The
information on the prior image significantly (p=0.015) improved the accuracy for classification of
the masses. © 200! American Association of Physicists in Medicine. [DOIL: 10.1118/1.1412242]

Key words: computer-aided diagnosis, interval
mammography, malignancy

I. INTRODUCTION

Mammography is currently the most effective method for
early breast cancer detection.'? Analysis of interval changes
is an important method used by radiologists in mammo-
graphic interpretation to detect developing malignancy.’* A
variety of computer-aided diagnosis (CAD) techniques have
been developed to detect abnormalities and to distinguish
malignant and benign lesions on mammograms. We are
studying the use of CAD techniques to assist radiologists in
interval change analysis.

Commonly used lesion classification methods for CAD
employ information from a single image. These methods
have been shown to perform well in lesion classification
problems.>~'? However, when mammograms from multiple
examinations are available, it can be expected that even
higher accuracy may be achieved if the computer can utilize
the interval change information for classification. New com-
puter vision methods will have to be designed to extract
features characterizing temporal changes and to improve the
differentiation between benign and malignant masses.

A number of researchers have developed algorithms to
register the mass on current and prior mammograms. Sallam
et al.'* have proposed a warping technique for mammogram
registration based on manually identified control points. A
mapping function was calculated for matching each point on
the current mammogram to a point on the prior mammo-
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gram. Brzakovic eral.!* have investigated a three-step
method for comparison of the most recent and the prior
mammograms. They first registered two mammograms using
the method of principal axis, and partitioned the current
mammogram using a hierarchical region-growing technique.
Translation, rotation, and scaling were then used for registra-
tion of the partitioned regions. Vujovic et al.' have proposed
a multiple-control-point technique for mammogram registra-
tion. They first determined several control points indepen-
dently on the current and prior mammograms based on the
intersection points of prominent anatomical structures in the
breast. A correspondence between these control points was
established based on a search in a local neighborhood around
the control point of interest.

The previous techniques depend on the identification of
control points. Furthermore, these studies aimed at registra-
tion without using the results for interval change analysis.

Gopal et al.'%"7 and Hadjiiski et al.'®?° have developed a
multistage technique that defines a transformation to locally
map the position of the mass on a current mammogram to a
search region on the prior mammogram. A local search for
the exact mass location is then performed on the prior mam-
mogram. Good et al.*! have developed a technique that de-
fines a transformation to map all points from the current
mammogram onto a prior mammogram. The current mam-
mogram is then subtracted from the prior mammogram.

© 2001 Am. Assoc. Phys. Med. 2309
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Few studies have been performed so far in the area of
automated classification of breast masses based on the inter-
val change information. Gopal et al? and Hadjiiski
et al.>*?* have carried out a preliminary study of the classi-
fication scheme that combines prior and current information
automatically extracted from masses on prior and current
mammograms, respectively. The classifier using the com-
bined prior and current information performed better than the
classifier using current information alone. To our knowledge,
no other studies that describe automated classification of ma-
lignant and benign breast lesions based on temporal changes
of mammographic features have been reported.

The goal of our research is to develop a CAD method for
automated analysis of interval changes to be used as an aid to
radiologists for detection and classification of malignant and
benign lesions on mammograms. In this study, we conducted
a preliminary investigation to demonstrate the feasibility of
analyzing temporal differences in the texture and morpho-
logical features between a mass on the most recent mammo-
gram and a prior mammogram of the same view for the
classification task. Additionally, we compared this method
with two classification methods, one of which is based on
information extracted from the current mammograms alone,
the other one is based on information extracted from the
prior mammograms alone.

Il. MATERIALS AND METHODS

The new classification technique is based on the design of
features that characterize the temporal change in the lesion of
interest between two mammographic examinations. The
mass to be analyzed can either be identified manually by a
radiologist or automatically by a computerized detection pro-
gram. In this study, the mass on each mammogram was iden-
tified by an MQSA certified radiologist. The masses on both
the current and the prior mammograms were automatically
segmented using an active contour method that has been dis-
cussed in detail elsewhere.>>?® Examples of the segmentation
are shown in Figs. 2 and 3 for a malignant and a benign
mass, respectively. Features that characterized mammo-
graphic masses including texture features, morphological
features, and spiculation features were extracted from each
mass. Three of the morphological features are related to the
mass size. Additionally, difference features were obtained by
subtracting a feature of the prior mass from the correspond-
ing feature of the current mass. The current, prior, and dif-
ference features formed a multidimensional feature space for
the classification task. Stepwise feature selection applied to
linear discriminant analysis (LDA) was used to select the
most useful features. The selected features were then used as
the input predictor variables for the LDA classifier (Fig. 1).
The classifier was trained and tested by a leave-one-case-out
resampling scheme. A case was considered to contain all
regions of interest from a given patient. In each resampling
step, the temporal pairs from 55 cases were used for feature
selection and formulation of the linear discriminant function,
while the temporal pairs from the left-out case were used for
testing the trained classifier. A total of 56 training and testing
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FiG. 1. Block diagram of the classification method.

steps were obtained from the 56 cases. The classification
results from the 56 test cases were accumulated to evaluate
the classifier performance. Since the data set in this study
was still small, we chose the feature selection parameters
such that the dimensionality of the input feature vector for
the LDA classifier was small in order to reduce the possibil-
ity of over-training. The feature selection procedure is dis-
cussed in Sec. IIC.

To evaluate the improvement in the classifier performance
designed by using the temporal change information, two ad-
ditional classifiers were obtained. One of them was trained
using the information extracted from the current single im-
ages of the temporal pairs. We will refer to these images as
current images. The other classifier was trained using the
information extracted from the prior single images of the
temporal pairs and we will refer to these images as prior
images. Comparison of the three classifiers will reveal the
effectiveness of interval change analysis for the classification
of malignant and benign masses.

A. Data set

A set of 140 temporal pairs of mammograms containing
biopsy-proven masses on the current mammograms was used
to examine the performance of this approach. The data set
consisted of 241 mammograms from 56 patients. The mam-
mograms were digitized with a LUMISCAN 85 laser scanner
at a pixel resolution of 50 xmX 50 wm and 4096 gray levels.
The digitizer was calibrated so that gray level values were
linearly proportional to the optical density (OD) within the
range of 0—4 OD units, with a slope of 0.001 OD/pixel
value. The digitizer output was linearly converted so that a
large pixel value corresponded to a low optical density. The
image matrix size was reduced by averaging every 2X2 ad-
jacent pixels and downsampled by a factor of 2, resulting in
images with a pixel size of 100 umX 100 um for further
analysis.

There were 57 biopsy-proven masses (33 malignant and
24 benign) in the 56 cases. The 241 mammograms contained
different mammographic views (CC, MLO, and lateral
views) and multiple examinations of the masses including
the examination when the biopsy decision was made. By
matching masses of the same view from two different exami-
nations, a total of 140 temporal pairs were formed, of which
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FIG. 2. A malignant mass: (a) the mass in a prior year mammogram (1997),
(b) mass outline obtained by active contour segmentation. (c) the mass in a
current year mammogram (1998), (d) mass outline obtained by active con-
tour segmentation.

85 were malignant and 55 benign. A malignant temporal pair
consisted of a biopsy-proven malignant mass or a mass that
was initially not recommended for biopsy and later found to
be malignant by biopsy in a future year. A similar definition
was used for the benign temporal pairs. Within a pair, the
current mammogram was defined as the mammogram with
the later date, and the prior mammogram was defined as the
one with the earlier date. Therefore, in cases with three con-
secutive exams, more than one temporal pair could be
formed and two of the mammograms could be called ““cur-
rent.” Among the 140 temporal pairs, we had 120 unique
current mammograms. Of the masses in the 120 current
mammograms, 70 were malignant and 50 benign.

Since all cases in this data set had undergone biopsy, the
benign masses in this set could not be distinguished easily
from the malignant ones based on current mammographic
criteria. Changes occurred for the benign masses that
prompted the radiologists to recommend biopsy. Examples of
such cases are shown in Figs. 2 and 3. The malignant mass in
Fig. 2 did not increase in size but changed its density. The
benign mass (Fig. 3), on the other hand, appeared to have
spicules. For the malignant masses in this data set, the aver-
age mass size, estimated by the radiologist as the longest
dimension of the mass on the mammogram, was 8.2 mm on
the prior mammograms and 12.7 mm on the current mam-
mograms. The corresponding sizes were 10.6 and 12.2 mm,
respectively, for the benign masses. As discussed in Sec. 1V,
25 of the masses on the prior mammograms were too subtle
for the radiologist to estimate their sizes. The average sizes
given previously were obtained after excluding all temporal
pairs that involved these masses.

The radiologist also rated the visibility of the masses on
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FIG. 3. A benign mass: (a) the mass on a prior year mammogram (1995), (b)
mass outline obtained by active contour segmentation, (c) the mass on a
current year mammogram (1996), (d) mass outline obtained by active con-
tour segmentation.

the mammograms relative to those encountered in clinical
practice on a 10-point scale, with 1 representing the most
obvious and 10 representing the most subtle masses. The
visibility of the masses on the current mammogram is plotted
against those on the prior mammogram in Fig. 4 for the
malignant and benign temporal pairs. Generally the malig-
nant masses were less visible on the prior than on the current
mammograms while the visibility of the benign masses was
found to be more similar on the current and prior mammo-
grams. The mean difference in the visibility rating between
the prior and the current mammograms for the malignant
masses is 2.8 compared to 1.2 for the benign masses (p
=0.0007 with an unpaired t-test between the malignant and
benign masses). The correlation coefficient is 0.02 for malig-
nant masses [Fig. 4(a)] and 0.37 for benign masses [Fig.
4(b)]. In addition, the radiologist also estimated the likeli-
hood of malignancy of the current masses on a 10-point con-
fidence scale (1—definitely benign and 10—definitely malig-
nant) based on the 120 current mammograms alone without
comparison with the prior (Fig. 5). The temporal pairs had a
time interval of 6--36 months (Fig. 6). More than 70% of the
pairs had a time interval of 12 months.

B. Feature extraction

A rectangular region of interest (ROI) was defined to in-
clude the radiologist-identified mass with an additional sur-
rounding breast tissue region of at least 40 pixels wide from
any point of the mass border. A fully automated method was
then used for segmentation of the mass from the breast tissue
background within the ROIL. The masses on both the current
and the prior mammograms were automatically segmented
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FIG. 4. Visibility of the masses on the current mammogram plotted against
those on the prior mammogram for (a) malignant and (b) benign temporal
pairs. The visibility was rated on a 10-point discrete scale (1 =most obvious,
10=most subtle). Because many of the data points overlap, we indicate the
number of points with the same rating by a number next to the symbol (m or
b). The diagonal line on the graph represents the cases when the current and
the prior mass sizes are identical. The dashed lines are the linear regression
lines for the data defined by y=0.038x+7.86 for (a) and by y=0.857x
+ 1.742 for (b). The correlation coefficient for malignant masses is 0.02 and
for benign masses is 0.37.

within the ROI using a two-dimensional active contour
method that was initialized by K-mean clustering. 25.26

The texture features used in this study were calculated
from run-length statistics (RLS) matrices. %7 The RLS matri-
ces were computed from the images obtamed by the rubber
band straightening transform (RBST).® The RBST maps a
band of pixels surrounding the mass onto the Cartesian plane
(a rectangular region). In the transformed image, the mass
border appears approximately as a horizontal edge, and
spiculations appear approximately as vertical lines. A com—
plete description of the RBST can be found in the literature.5

RLS texture features were extracted from the vertical and
horizontal gradient magnitude images, which were obtained
by filtering the RBST image with horizontally or vertically
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FiG. 5. The distribution of the malignancy ranking of the masses in the 120
current mammograms. The rating was performed by an experienced MQSA
radiologist {1: definitely benign, 10: definitely malignant).

oriented Sobel filters and computing the absolute gradient
values of the filtered image.® Five texture measures, namely,
short run emphasis (SRE), long run emphasis (LRE), gray
level nonuniformity (GLN), run length nonuniformity
(RLN), and run percentage (RP) were extracted from the
vertical and horizontal gradient images in two directions, ¢
=0°, and 0=90°. Therefore, a total of 20 RLS features
were calculated for each ROIL The definition of the RLS
feature measures can be found in the Appendix and in the
literature.?’

Morphological features were extracted from the automati-
cally segmented mass shape. Five of the morphological fea-
tures were based on the normalized radial length (NRL), de-
fined as the Euclidean distance from the object’s centroid to
each of its edge pixels, i.e., the radial length, and normalized
relative to the maximum radial length for the object.'' The
following five NRL features were extracted: mean
(NRLAVG), standard deviation (NRLSD), entropy (NR-
LENT), area ratio (NRLAREAR), zero crossing count (NR-
LZCC). In addition, the perimeter (PERIM), area (AREA),
circularity (CIRC), rectangularity (SQR), contrast (CONT),
perimeter-to-area ratio (CRR), and Fourier descriptor (FF)
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features were extracted. The definitions of the morphological
features can be found in the literature.’?® Three of the mor-
pHological features (perimeter, area, and perimeter-to-area
ratio) are related to the mass size and thus are feature de-
scriptors of the mass size.

A spiculation measure was defined for each pixel on the
mass border by using the statistics of the image gradient
direction relative to the normal direction to the mass border.
The statistics was determined in a 90° sector centered about
the normal at the border pixel and outside of the mass
border.**® The spiculation measure for each border pixel
was normalized to be between 0 and 7/2, with a value of /4
indicating a random orientation of image gradients, and
larger values indicating a higher likelihood of spiculation.
Three features were extracted from the spiculation measure.
The first feature (AVG) was the average of the spiculation
measure for all pixels on the mass boundary. The second
feature (PERC_ABYV) was the percentage of border pixels
with a spiculation measure larger than /4, and the third
feature (AVE_ABYV) was the average of the spiculation mea-
sure for those pixels with a spiculation measure larger than
/4.

A total of 35 features (20 RLS, 12 morphological, and 3
spiculation) were therefore extracted from each ROI. Addi-
tionally, difference features were obtained by subtracting a
prior feature from the corresponding current feature. There-
fore, 35 difference features were derived from the 20 RLS,
12 morphological, and 3 spiculation features.

C. Feature selection

In order to reduce the number of the features and to obtain
the best feature subset to design an effective classifier, fea-
ture selection with stepwise linear discriminant analysis®
was applied. At each step of the stepwise selection procedure
one feature is entered or removed from the feature pool by
analyzing its effect on the selection criterion. In this study,
the Wilks' lambda (the ratio of within-group sum of squares
to the total sum of squares’®) was used as a selection crite-
rion. The optimization procedure used a threshold F;, for
feature entry, a threshold F, for feature removal, and a
tolerance threshold T for measuring feature correlation with
the other features. In a feature entry step, the features not yet
selected are entered into the selected feature pool one at a
time, the significance of the change in the Wilks' lambda
caused by this feature is estimated based on F statistics. The
feature with the highest significance is entered into the fea-
ture pool if its significance is higher than F;, and its corre-
lation value with the rest of the features in the pool is below
T. In a feature removal step, the features that have already
been entered in the selected feature pool are removed one at
a time and the significance of the change in the Wilks'
lambda is estimated. The feature with the least significance is
removed from the selected feature pool if the significance is
less than F . Since the appropriate values of Fy,, F, and
T are not known a priori, we examined a range of Fy,, Foy.,
and T values using an automated simplex optimization
method.*!*? The appropriate thresholds were chosen in such
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TaBLE L Classification results for the classifier based on the temporal
change information, the classifier based on current single image information,
and the classifier based on prior single image information.

Test partial
A©9
b4

Avg. No. of

Classification  selected features Training A, Test A,

Temporal pairs 10 0.92 0.88+0.03 0.37%+0.10
Current images 11 0.90 0.82+0.04 0.32+0.08
Prior images 4 0.78 0.76+0.04 0.24+0.08

a way that a minimum number of features were selected to
achieve a high accuracy of classification by LDA. More de-
tails about the stepwise linear discriminant analysis and its
application to CAD can be found elsewhere.>S

The feature selection in this study was performed by ap-
plying the stepwise feature selection to the entire feature
space (combination of texture, spiculation, and morphologi-
cal features altogether) as well as subspaces obtained by dif-
ferent combinations of the three feature subspaces: texture,
spiculation, and morphological features. The stepwise feature
selection uses a sequential forward inclusion and backward
elimination approach. The procedure does not exhaustively
evaluate all possible combinations of individual features. It is
therefore not optimal, especially when the feature space is
large and the training sample is small. By limiting the input
to the feature subspaces, the dimensionality was reduced
compared to the entire feature space. We found that better
feature subsets could be selected by the stepwise feature se-
lection in the subspaces than in the entire feature space.

D. Evaluation methods

To evaluate the classifier performance, the training and
test discriminant scores were analyzed using receiver operat-
ing characteristic (ROC) methodology.®® The discriminant
scores of the malignant and benign masses were used as
decision variables in the LABROCI program,* which fits a
binormal ROC curve based on maximum likelihood estima-
tion. The classification accuracy was evaluated as the area
under the ROC curve, A . The performances of the classifi-
ers were also assessed by estimating the partial area index
(Ago‘g)). The partial area index (Ago'())) is defined as the area
that lies under the ROC curve but above a sensitivity thresh-
old of 0.9 (TPF;=0.9) normalized to the total area above
TPF,, (1—TPF;,). The partial Aio'g) indicates the perfor-
mance of the classifier in the high sensitivity (low false nega-
tive) region which is most important for a cancer detection
task.

Ill. RESULTS

The performances of the classifiers based on the temporal
pairs, the current images, and the prior images are summa-
rized in Table L The classifiers that achieved the highest test
A_ values with a small average number of features were pre-
sented here. Table II is a summary of the features selected for
each classifier. For the 56 training subsets of temporal pairs
used in this study, an average of 10 features were selected for
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TasLe II. Selected features for classifiers based on temporal pairs, current images, and prior images. The letter

“H" or “V™ at the beginning of the texture feature labels indicates that the features were extracted from the

horizontal or vertical gradient magnitude images, respectively. The number (0 or 90) at the end of the texture .
feature labels shows the direction at which the features were extracted.

Temporal pairs Current Prior
images images
Feature type Group Features Curr Pr Diff Curr Pr
Texture SRE H_SRE_O X
H_SRE_90 X x
V_SRE_0 x x X X
V_SRE_90 x
LRE V_LRE_0 X X
H_LRE_0 X
RLN V_RLN_O X X
RP H_RP_O X X
Spiculation PERC_ABV X X
AVG X
AVG_ABYV X
Morphological CRR X
NRLZCC X
PERIM X
NRLAVG X
SQR X
CONT X

the classification task. The most frequently selected features
included 4 difference RLS features (3 SRE and 1 LRE), 4
RLS features (2 SRE, 1 RLN and 1 RP), 1 spiculation feature
from the current image, and 1 spiculation feature from the
prior image (Table II). The LDA classifier achieved an aver-
age training A, of 0.92 and a test A, of 0.88. The test partial
ALY was 0.37.

For classification of malignant and benign masses using
the current single images (the current images of the temporal
pairs), the LDA classifier selected an average of 11 features
for the 56 training subsets. The most frequently selected fea-
tures were 4 RLS features (2 SRE, 1 LRE and 1 RLN), 1
spiculation feature, and 6 morphological features (Table II).
The classifier achieved an average training A, of 0.90, a test
A, of 0.82, and a test partial A®” of 0.32.

For the classification of masses based on the prior single
images alone, an average of 4 features were selected for the
56 training subsets. The most frequently selected features
were 3 RLS features (1 SRE, 1 LRE, and 1 RP) and 1 spicu-
lation feature. The LDA classifier achieved an average train-
ing A, of 0.78, test A, of 0.76, and test partial A? of 0.24.

The test ROC curves for the three classifiers are compared
in Fig. 7. The difference in the test A, between the classifier
based on the temporal pairs and that based on the current
images alone is statistically significant (p=0.015). The dif-
ference in the test A, between the classifier based on the
temporal pairs and that based on the prior images alone is
also statistically significant (p=0.001). The partial area in-
dex for the classifier based on the temporal pairs is also
improved compared to the classifiers based on the current or
the prior images alone, although the differences did not
achieve statistical significance.
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IV. DISCUSSION

Texture and spiculation features were important for ma-
lignant and benign classification of mammographic masses
for all three types of classifiers: the classifier based on tem-
poral pair information, the classifier based on current image
information, and the classifier based on prior image informa-
tion. One or more of the spiculation features were always
selected in all training partitions for all three classifiers. The
most frequently selected texture features were the short run
emphasis (SRE) features. They comprised more than 50% of

" the texture features selected for the three classifiers (Table

).
The temporal-information-based classifier showed im-
proved performance compared to the classifiers based on cur-
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FiG. 7. The test ROC curves for the classifiers based on temporal pair
information, current image information, and prior image information.
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rent or prior image information alone. The input feature
space to the temporal-information-based classifiers included
the current, prior, and difference features. This allows the
classifier to choose the individual features or the difference
features. Using the stepwise feature selection procedure and
the linear discriminant classifier, it was found that the texture
and the spiculation features contained useful temporal infor-
mation to perform malignant and benign mass classification.
Texture features appeared to provide the best information by
the difference features obtained from subtracting the prior
from the corresponding current features (SRE and LRE dif-
ference features). On the other hand, the best use of the
spiculation features appeared to be a direct combination of
current and prior features in the input feature vector by the
LDA since the individual features were chosen.

We found that better feature subsets could be selected by
the stepwise feature selection in the subspaces than in the
entire feature space. For example, for the temporal-
information-based classifier, a better feature subset with a
higher test A at 0.88 was found when the input feature space
included only the texture and spiculation subspaces. The ad-
dition of the morphological feature subspace to the input
feature space reduced the highest test A, to 0.84. Similarly,
in the case of the classifier based on prior image information,
a better feature subset was obtained when the texture and
spiculation feature subspaces were used in the input feature
space for stepwise feature selection. Again the addition of
the morphological feature subspace to the input feature space
reduced the highest test A to 0.72. The classifier based on
current image information was the only one, among the
three, that obtained a better result, as shown in Table I, when
the morphological feature subspace was included in the input
feature space.

One reason for the poor performance of the morphologi-
cal features may be due to the fact that the masses were more
subtle in the prior images. In fact, the experienced MQSA
mammographer was not confident in seeing 25 of the
“masses’ on the prior images and could not provide a mass
size estimation for them. Although the active contour model
would stop the iteration based on the preset criteria and
found an ““outline™ of the masses on the prior mammograms,
generally these mass outlines were less reliable than those on
the current masses in providing morphological characteris-
tics of the masses. Texture features did not depend as
strongly on the precise mass boundary as morphological fea-
tures. Three out of the four features selected for classification
of the malignant and benign masses on the prior images were
RLS texture features. A spiculation feature was also found to
be a good discriminator.

We also performed ROC analysis of the malignancy con-
fidence ratings provided by the experienced MQSA radiolo-
gist for the current image data set (120 images). The distri-
bution of the malignancy ratings is shown in Fig. 5, which
resulted in an A value of 0.80%0.04. This indicates that the
masses in the current mammograms cannot be easily distin-
guished as malignant or benign even by an experienced ra-
diologist, consistent with the fact that all lesions had indeed
undergone biopsy. The classifier based on the current image
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information has an A, value of 0.82+0.04, similar to the
accuracy of the radiologist for this data set.

In this study, the locations of the masses were identified
manually on both the current and the prior mammograms by
a radiologist. This simulated the situation when a radiologist
finds a mass either in a diagnostic or a screening setting and
call upon the CAD algorithm to seek a second opinion on the
likelihood of malignancy of the mass based on the interval
change information. We are developing an automated re-
gional registration technique that can automatically locate
the mass on the prior mammogram based on its location on
the current mammogram. The location of the mass on the
current mammogram can be identified by a radiologist or by
an automated mass detection algorithm. In the latter case, the
process of mass detection, current and prior mass registra-
tion, and classification can be fully automated. The analysis
of interval change can be incorporated as one of the func-
tions provided by a CAD system for interpretation of mam-
mograms.

In this study, we employed a simple measure of temporal
change by taking the difference between the feature from the
current mass and the corresponding feature from the prior
mass. We observed improvement in classification with this
simple temporal information. It will be important to evaluate
other similarity measures that can characterize small differ-
ence in image features of the object of interest. It can be
expected that a more sensitive similarity measure will pro-
vide a better measurement of dissimilarity, or difference, be-
tween the current and prior masses and further improve the
utilization of the temporal change information on mammo-
grams.

V. CONCLUSION

We performed a preliminary study to evaluate the effec-
tiveness of interval change analysis for classification of ma-
lignant and benign masses on mammograms. It was found
that the difference RLS texture features and spiculation fea-
tures were useful for identification of malignancy in tempo-
ral pairs of mammograms. The information on the prior im-
age was important for characterization of the masses; 5 out
of the 10 selected features contained prior information. We
found that the mass size descriptors were not discriminatory
features for these difficult cases because many of the benign
masses also grew over time. In comparison with the classi-
fication based on image information from the current images
alone, the temporal change information significantly (p
=0.015) improved the accuracy for classification of the
masses in terms of the total area under the ROC curve (A_).
The partial area under the ROC curve for the classifier based
on the temporal pairs (A20'9)=0.37) is also improved com-
pared to the classifier based only on the current images
(A§°'9)=0.32), although the difference did not achieve statis-
tical significance. Further studies are under way to improve
this temporal change classification technique and to evaluate
its performance on a larger data set.
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APPENDIX: RUN LENGTH STATISTICS TEXTURE
FEATURES

A gray level run length is a set of consecutive collinear
pixels all having the same gray level value. The length of the
run is the number of pixels in the run. For a given image it is
possible to compute a gray level run length matrix for runs in
any given direction. In this study, two directions are used:
6=0°, and §=90°. Let p(i,j) be the number of times there
is a run of length j that has a gray level i. Let N, be the
number of gray levels and N, be the number of runs. The
short run emphasis is defined as
N SN, p(i.j)
i=1%j=1"j
Eiﬁlz_i:r[p(lv])

This feature divides the frequency of each run length by
the length of the run squared. This tends to emphasize short
runs. The denominator is the total number of runs in the
image and serves as a normalizing factor. The long run em-
phasis is defined as

Ny N, 2 2 s
202,20%p())
N, <N
Eijlzj=lp(l,])

>
SRE=

LRE=

This feature multiplies the frequency of each run length by
the length of the run squared. This tends to emphasize long
runs.

The gray level nonuniformity is defined as

=18 (2)%,p(0))°
N N P
=2, 250,p(0.)

i=1%j=

GLN=

This feature squares the number of run lengths for each gray
level. This measures the gray level nonuniformity of the im-
age. If the runs are equally distributed over all gray levels,
the feature takes on its lowest values. A larger run length
contributes more to the feature value.
Run length nonuniformity is defined as
No Ny e s
=N (S ()
N <N .
E,'ﬁlEj:lp(’v])
This feature measures the nonuniformity of the run lengths.
If the runs are equally distributed over all lengths, the feature
will have a low value. A larger run contour contributes more
to the feature value.

RLN=
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Run percentage is defined as

N N . o
_ 2,’.—‘?12,';1[’(’9])
—>p

This feature is a ratio of the total number of runs to the total
number of possible runs (P) if all runs have a length of one.

The above-given definitions are based on Galloway” and
more details can be found in this reference.
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ABSTRACT

A new classification scheme was developed to classify mammographic masses as malignant and benign by using interval
change information. The masses on both the current and the prior mammograms were automatically segmented using an
active contour method. From each mass, 20 run length statistics (RLS) texture features, 3 spiculation features, and mass size
were extracted. Additionally, 20 difference RLS features were obtained by subtracting the prior RLS features from the
corresponding current RLS features. The feature space consisted of the current RLS features, the difference RLS features, the
current and prior spiculation features, and the current and prior mass sizes. Stepwise feature selection and linear discriminant
analysis classification (LDA) were used to select and merge the most useful features. A leave-one-case-out resampling
scheme was applied to train and test the classifier using 140 temporal image pairs (85 malignant, 55 benign) obtained from 57
biopsy-proven masses (33 malignant, 24 benign) in 56 patients. An average of 10 features were selected from the 56 training
subsets: 4 difference RLS features, 4 RLS features and 1 spiculation feature from the current image, and 1 spiculation feature
from the prior, were most often chosen. The classifier achieved an average training A, of 0.92 and a test A, of 0.88. For
comparison, a classifier was trained and tested using features extracted from the 120 current single images. This classifier
achieved an average training A, of 0.90 and a test A, of 0.82. The information on the prior image significantly (p=0.01)
improved the accuracy for classification of the masses.

Keywords: Computer-Aided Diagnosis, Interval Changes, Classification, Feature analysis, Mammography, Malignancy.
1. INTRODUCTION

Mammography is currently the most effective method for early breast cancer detection"?. Analysis of interval changes is
an important method used by radiologists in mammographic interpretation to detect developing malignancy™. A variety of
computer-aided diagnosis (CAD) techniques have been developed to detect mammographic abnormalities and to distinguish

between malignant and benign lesions. We are studying the use of CAD techniques to assist radiologists in interval change
analysis.

Commonly used classification methods for CAD use information from a single image. These methods have been shown
to perform well in lesion classification problems®". However, when multiple- -year mammograms of a mass are available, it is
not trivial to design computer vision methods to use the temporal information for computer-aided classification and to
improve the differentiation between benign and malignant masses.

The goal of our research is to develop a technique for computerized analysis of temporal differences between a lesion on
the most recent mammogram and a prior mammogram of the same view. The computer algorithm can be used to assist
radiologists in evaluatmg interval changes and thus distinguishing between malignant and benign masses for CAD. We have
previously presented® preliminary results that demonstrated the fea51b111ty of classifying malignant and benign masses based
on interval change analysis. In this study, we continue the development of this approach. Addmonally, we compared this
method with a classification method based on information extracted from the current mammogram alone.

2. CLASSIFICATION TECHNIQUE

A new classification scheme was developed to classify mammographic masses as malignant and benign by using interval
change information. The technique is based on the generation of features that we expect will represent adequately the
temporal information and will discriminate between malignant and benign masses.
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Figure 1. Block-diagram of the classification method.

The mass to be analyzed can either be identified manually by a radiologist or automatically by a computerized detection
program. In this study, the masses were identified by an MQSA radiologist on each mammogram. The masses on both the
current and the prior mammograms were automatically segmented using an active contour method. An example of the
segmentation is shown in Figure 2 and Figure 3 for a malignant and a benign mass, respectively. Features such as texture
features, spiculation features and mass size were extracted from each mass. Additionally, difference features were obtained
by subtracting a prior feature from the corresponding current feature. The feature space conmsisted of current, prior, and
difference features. Stepwise feature selection applied to linear discriminant analysis (LDA) were used to select the most
useful features. The selected features were then used as the input predictor variables of the LDA classifier (Figure 1). A
leave-one-case-out resampling scheme was employed to train and test the classifier. The LDA classifier was used in order to
keep the discrimination function simple, thereby reducing the possibility of over-training.

To evaluate the improvement in the classifier performance designed by using the temporal change information, an
additional classifier was trained using the information extracted from the current single images of the temporal pairs. We will
refer to these images as current images. Comparison of the two classifiers will reveal the effectiveness of interval change
analysis on classification of malignant and benign masses.

3.DATA SET

A set of 140 temporal pairs of mammograms containing biopsy-proven masses on the current mammograms was used to
examine the performance of this approach. The data set consisted of a total of 241 mammograms from 56 patients. The
mammograms were digitized with a LUMISCAN 85 laser scanner at a pixel resolution of 50 t#m X 50 tm and 4096 gray

levels. The digitizer was calibrated so that gray level values were linearly proportional to the optical density (OD) within the
range of 0 to 4 OD units, with a slope of 0.001 OD/pixel value. Outside this range, the slope of the calibration curve
decreased gradually. The digitizer output was linearly converted so that a large pixel value corresponded to a low optical
density. The images were averaged and down-sampled by a factor of 2 resulting in images with a pixel size of 100 im X

100 pm for further analysis.

The 56 cases contained 57 biopsy proven masses (33 malignant and 24 benign). The 241 mammograms contained different
mammographic views and multiple years of the masses including the year when the biopsy was performed. By matching
masses of the same view from two different exams, a total of 140 temporal pairs were formed, of which 85 were malignant
and 55 benign. A malignant temporal pair consisted of a biopsy proven malignant mass or a mass that was followed up and
found to be malignant by biopsy in a future year. Similar definitions were used for the benign temporal pairs. Within the 140
temporal pairs, a total of 120 mammograms were current mammograms. Of the 120 current mammograms, 70 were
malignant and 50 benign.

662 Proc. SPIE Vol. 4322
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Figure 2. A malignant mass: (a) the mass in a prior year mammogram (1997), (b) mass outline
obtained by active contour segmentation, (c) the mass in a current year mammogram
(1998), (d) mass outline obtained by active contour segmentation.

Since all cases in this data set had undergone biopsy, the benign masses in this set could not be distinguished easily from
the malignant ones based on current mammographic criteria. Examples of such cases are shown in Figure 2 and Figure 3.
The malignant mass in Figure 2 did not increase in size but changed its density. The benign mass (Figure 3), on the other
hand, appeared to have spicules. For the malignant masses in this data set, the average mass size was 8.2 mm on the prior
mammograms and 12.7 mm on the current mammograms. The corresponding sizes were 10.6 mm and 12.2 mm, respectively,

for the benign masses. The temporal pairs had a time interval of 6 to 36 months. More than 70% of the pairs had a time
interval of 12 months.

Figure 3. A benign mass: (a) the mass on a prior year mammogram (1995), (b) mass outline
obtained by active contour segmentation, (c) the mass on a current year mammogram
(1996), (d) mass outline obtained by active contour segmentation.
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4. FEATURE EXTRACTION

A rectangular region of interest (ROI) was defined to include the radiologist-identified mass with an additional
surrounding breast tissue region of at least 40 pixels wide from any point of the mass border. A fully automated method was
then used for segmentation of the mass from the breast tissue background within the ROI. The masses on both the current and
the prior mammograms were automatically segmented using a 2D active contour method, initialized by adaptive
thresholding'*'3.

The texture features used in this study were calculated from run-length statistics (RLS) matrices'®. The RLS matrices
were computed from the images obtained by the rubber band straightening transform (RBST)’. The RBST maps a band of
pixels surrounding the mass onto the Cartesian plane (a rectangular region). In the transformed image, the mass border
appears approximately as a horizontal ed%c, and spiculations appear approximately as vertical lines. A complete description
of the RBST can be found in the literature’.

RLS texture features were extracted from the vertical and horizontal gradient magnitude images, which were obtained by
filtering the RBST image with horizontally or vertically oriented Sobel filters and computing the absolute gradient value of
the filtered image. Five texture measures, namely, short run empbhasis, long run emphasis, gray level nonuniformity, run
length nonuniformity, and run percentage were extracted from the vertical and horizontal gradient images in two directions,
6 = Oo, and 6 =90°. Therefore, a total of 20 RLS features were calculated for each ROI. The definition of the RLS

feature measures can be found in the literature'®.

The morphological features were extracted from the automatically segmented mass shape, and included features such as
the area, circularity, rectangularity, compactness, and the axis ratio’. Spiculation features were extracted by using the
statistics of the image gradient direction relative to the normal direction to the mass border in a ring of pixels surrounding the

14,15
mass .

A total of 35 features (20 RLS, 12 morphological and 3 spiculation) were therefore extracted from each ROI.
Additionally, difference features were obtained by subtracting a prior feature from the corresponding current feature.
Therefore 20 RLS, 12 morphological and 3 spiculation difference features were obtained.

5. FEATURE SELECTION

In order to reduce the number of the features and to obtain the best feature subset to design an effective classifier, feature
selection with stepwise linear discriminant analysis'®? was applied. At each step of the stepwise selection procedure one
feature is entered or removed from the feature pool based on analysis of its effect on the selection criterion. The stepwise
selection procedure is controlled by a simplex optimization method'® 7 in such a way that a minimum number of features
were selected to achieve a high accuracy of classification by LDA. More details about the stepwise linear discriminant

analysis and its application to CAD can be found elsewhere® 7.

6. EVALUATION METHODS

To evaluate the classifier performance, the training and test discriminant scores were analyzed using receiver operating
characteristic (ROC) methodology?. The discriminant scores of the malignant and benign masses were used as decision
variables in the LABROC1 program®, which fits a binormal ROC curve based on maximum likelihood estimation. The
classification accuracy was evaluated as the area under the ROC curve, A,. The performances of the classifiers were also
assessed by estimation of the partial area index (Az(o'g)). The partial area index (AZ‘O‘ ) is defined as the area that lies under the
ROC curve but above a sensitivity threshold of 0.9 (TPF, = 0.9) normalized to the total area above TPF,, (1-TPF;). The
partial A, indicates the performance of the classifier in the high sensitivity (low false negative) region which is most
important for a cancer detection task.

7. CLASSIFICATION RESULTS
For the data set used in this study, an average of 10 features were selected from the 56 training subsets. The most

frequently selected features included 4 difference RLS features, 4 RLS features and 1 spiculation feature from the current
image, and 1 spiculation feature from the prior. The LDA classifier achieved an average training A, of 0.92 and a test A, of
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.+ 088 The LDA classifier using features extracted from the current single images (the current images of the temporal pairs)

" achieved an average training A, of 0.90 and a test A, of 0.82. An average of 11 features were selected from the 56 training
subsets. The most frequently selected features were 4 RLS features, 1 spiculation feature from the current image and 6
morphological features. The difference in the test A, between the two classifiers is statistically significant (p=0.01). The
classifier based on temporal pairs achieved a test partial A,%% of 0.37 and the classifier based on current images achieved a
test AZ(M) of 0.32. These results are summarized in Table 1.

Table 1. Classification results for the classifier based on the temporal change information and the classifier
based on current single image information.

Classification Avg. no. of selected features Training A, Test A, Test partial AZ(°‘9)
Temporal pairs 10 0.92 0.88 = 0.028 0.3710.1
Current images 11 0.90 0.82 +0.038 0.32 £ 0.08

8. CONCLUSION

The difference RLS texture features and spiculation features were useful for identification of malignancy in temporal
pairs of mammograms. The information on the prior image was important for characterization of the masses; 5 out of the 10
selected features contained prior information. We found that the size of the mass was not a discriminatory feature for these
difficult cases because many of the benign masses also grew over time. The temporal change information significantly
(p=0.01) improved the accuracy for classification of the masses in terms of the total area under the ROC curve (A,). The
partial area under the ROC curve is also improved for the classifier based on current and prior images (A = 037)
compared to the classifier based only on the current images (A,%? = 0.32), although the difference did not achieve statistical
significance. Further studies are underway to improve this temporal change classification technique and to evaluate its
performance on a larger data set.
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An Adaptive Similarity Measure for Automated Identification of Breast Lesions in
Temporal Pairs of Mammograms for Interval Change Analysis

Lubomir Hadjiiski, Berkman Sahiner, Heang-Ping Chan, Nicholas Petrick, Mark A.
Helvie

PURPOSE: An adaptive similarity measure (ASM) is designed to improve
automated identification of corresponding lesions on prior mammograms. This
technique is the basis for interval change analysis of breast lesions in CAD
applications.

MATERIALS AND METHODS: A new class of similarity measures (SM) is
proposed. It combines adaptive filtering to enhance the lesion and a SM as a figure-
of-merit (FOM) measure. The filters are designed with a training set to maximize and
minimize the FOM for the similar and dissimilar image pairs, respectively, by using a
gradient optimization technique.

The ASM was applied to the final stage of our multistage regional registration
technique for mass identification on the prior mammogram. A search for the best
match between the lesion template from the current mammogram and a structure on
the prior mammogram was carried out within a search region, guided by the ASM.
This new approach was evaluated by using 179 temporal pairs of mammograms
containing biopsy-proven masses.

RESULTS: 86% of the estimated lesion locations resulted in an area overlap of at
least 50% with the true lesion locations. The average distance between the estimated
and the true lesion centroids on the prior mammogram was 4.5+ 6.7 mm. In
comparison, the correct localization and the average distance using a conventional
correlation SM were 84% and 4.9+ 7.0 mm, respectively.

CONCLUSION: The ASM improved the identification of the corresponding lesions
on temporal pairs of mammograms. Further studies are underway to improve the
technique, expand it to different types of SM, and evaluate its accuracy on a larger
data set.
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computerized Regional Registration of Corresponding Microcalcificatio
Clusters on Temporal Pairs of Mammograms for Interval Change Analysis
L.M. Hadjiiski, PhD, Ann Arbor, Ml (Ihadjisk@umich.edu) ® H. Chan, PhD * N.A.
Petrick, PhD ® B. Sahiner, PhD ¢ M.N. Gurcan, PhD ¢ M.A. Helvie, MD e et al

PURPOSE: To develop a regional registration technique for identifying
corresponding microcalcification clusters on current and prior mammo-
grams of the same view. The technique will be useful for computerized
analysis of interval changes of microcalcification clusters in computer
aided diagnosis (CAD). . : _ .
METHOD AND MATERIALS: A multi-stage regional registration tech-
nique is being developed. In the first stage, an initial fan-shape search
region was estimated on the prior mammogram based on the cluster
location on the current mammogram. In the second stage, detection of
cluster candidates within the search region was performed with an
automated cluster search program. The cluster (TP) on the current image
was paired with every detected cluster (TP or FP) in the search region. In
the final stage, a correspondence classifier was designed to reduce the false
pairs (TP-FP) within the search region. Texture and morphological features
were extracted from the clusters on the current and the prior mammo-
grams. Similarity measures were derived from the extracted features of the
TP or FP clusters for each temporal pair. Stepwise feature selection with
simplex optimization was used to select the optimal feature subset. A
linear discriminant classifier was used to merge the selected features for
classification of the TP-TP and TP-FP cluster pairs. In this preliminary
study, a data set of 51 temporal pairs of mammograms from 19 patients
containing biopsy-proven microcalcification clusters was used. The true
cluster locations were identified by an MQSA radiologist. A leave-one-case-
out training and testing resampling scheme was used for feature selection
and classification. -

RESULTS: Using a search region with an average area of 1350 mm?
allowed all clusters of interest to be localized in the search region. The
average distance between the estimated and the true centroid of the
microcalcification clusters on the prior mammogram was 7.9+4.1 mm after
the first stage. The cluster search program detected 90% (46/51) of the true
clusters with an average of 0.69 FP cluster within the search region on the
prior mammograms. The correspondence classifier reduced the FP rate to
an average of 0.41 FP cluster at the cost of misclassifying 1 true pair.
CONCLUSIONS: Our preliminary study demonstrated that the regional
registration technique is a promising approach for identifying correspond-
ing microcalcification clusters on temporal pairs of mammograms. Further
studies are underway to improve the technique and to evaluate its
accuracy on a larger data set.
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Computer-Aided Characterization of Malignant and Benign
Microcalcification Clusters Based on the Analysis of Temporal
Change of Mammographic Features

Lubomir Hadjiiski, Heang-Ping Chan, Metin Gurcan, Berkman Sahiner,
Nicholas Petrick, Mark A. Helvie, Marilyn Roubidoux (Department of
Radiology, The University of Michigan, Ann Arbor, MI 48 109-0904)

We have previously demonstrated that interval change analysis can
improve differentiation of malignant and benign masses. In this study, a
new classification scheme using interval change information was
developed to classify mammographic microcalcification clusters as
malignant and benign. From each cluster, 20 run length statistic texture
features (RLSF) and 21 morphological features (MF) were extracted.
Twenty difference RLSF were obtained by subtracting a prior RLSF from
the corresponding current RLSF. The feature space consisted of the current
RLSF, the difference RLSF, and the current and prior MF. A leave-one-
case-out resampling was used to train and test the classifier using 65
temporal image pairs (19 malignant, 46 benign) containing biopsy-proven
microcalcification clusters. Stepwise feature selection and a linear
discriminant classifier, designed with the training subsets alone, were used
to select and merge the most useful features. An average of 10 features
were selected from the training subsets, of which 2 difference RLSF and 6
MF were consistently selected from most of the training subsets. The
classifier achieved an average training A, of 0.97 and a test A, of 0.85. For
comparison, a classifier based on the current single image features
achieved an average training A, of 0.93 and test A, of 0.79. These results
indicate that the use of temporal information improved the accuracy of
microcalcification characterization.



